1.Analysis of the safety, economic benefit and social psychological satisfaction of day breast conserving surgery for breast cancer
Jiao ZHOU ; Xiaoxiao XIAO ; Jiabin YANG ; Yu FENG ; Huanzuo YANG ; Mengxue QIU ; Qing ZHANG ; Yang LIU ; Mingjun HUANG ; Peng LIANG ; Zhenggui DU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):160-166
Objective To investigate the safety, economic benefits and psychological effects of day breast conserving surgery for breast cancer. Methods The demographic data and clinical data of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgeries in West China Hospital of Sichuan University from March 2020 to June 2021 were retrospectively collected; the demographic data, clinical data, medical and related transportation costs, and preoperative and postoperative BREAST-Q scores of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgery in West China Hospital of Sichuan University from June 2021 to June 2022 were prospectively collected. The safety, economic benefit, and psychological satisfaction of day surgery was analyzed. Results A total of 42 women with breast cancer were included in the retrospective study and 39 women with breast cancer were included in the prospective study. In both prospective and retrospective studies, the mean age of patients in both groups were <50 years. There were only statistical differences between the two groups in the aspects of hypertension (P=0.022), neoadjuvant chemotherapy (P=0.037) and postoperative pathological estrogen receptor (P=0.033) in the prospective study. In postoperative complications, there were no statistical differences in the surgical-related complications or anesthesia-related complications between the two groups in either the prospective study or the retrospective study (P>0.05). In terms of the overall cost, we found that the day surgery group was more economical than the ward surgery group in the prospective study (P=0.002). There were no statistical differences in postoperative psychosocical well-being, sexual well-being, satisfaction with breasts or chest condition between the two groups (P>0.05). Conclusion It is safe and reliable to carry out breast conserving surgery in day surgery center under strict management standards, which can save medical costs and will not cause great psychological burden to patients.
2.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
3.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
4.Thoughts of Syndrome Differentiation and Treatment and Effect Mechanism of Haoqin Qingdantang in Treating Viral Pneumonia Based on Theory of Treating Different Diseases with Same Therapy
Xin PENG ; Haotian XU ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Yihao ZHANG ; Kun YANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):209-217
The principle of treating different diseases with the same therapy is the essence of syndrome differentiation and treatment in traditional Chinese medicine (TCM). It means that when the same pathogenic changes or the same symptoms appear in the development of different diseases, the same principles or methods can be used for treatment. Due to the complexity and high variability of viral pathogenicity, the precise and effective treatment of different types of viral pneumonia (VP) has always been a research focus and difficulty in modern medicine. VP belongs to the category of external-contraction febrile disease, warm disease, and epidemic in TCM. Haoqin Qingdantang (HQQDD) is a representative formula for clearing heat and dispelling dampness in warm diseases, and its intervention in VP caused by various viral infections has significant effects. This study, guided by the theory of treating different diseases with the same therapy, links the related studies on using HQQDD to treat different types of VP and finds that influenza virus pneumonia (IVP), severe acute respiratory syndrome (SARS), and COVID-19 all have a common pathogenic mechanism of dampness-heat at different stages of respective diseases. When these diseases are dominated by damp-heat factors, the use of HQQDD yields remarkable therapeutic effects. Modern pharmacological studies have confirmed that HQQDD can inhibit virus replication, reduce fever reactions, inhibit the expression of inflammatory mediators, and regulate immune balance. Moreover, the sovereign medicine in this formula has excellent antiviral activity, and the formula reflects rich scientific connotations of treating VP. According to the theory of treating different diseases with the same therapy and based on the effective treatment practice and modern pharmacological research of HQQDD for different types of VP, this paper mines the underlying TCM theory of treatment with the same therapy, explores the syndrome differentiation and treatment strategy and effect mechanism of this formula for different types of VP, and analyzes the treatment mechanism and characteristics, with the aim of providing evidence and reference for the clinical application and modern research of HQQDD.
5.Role of Traditional Chinese Medicine in Regulating Immune Inflammation and Microvascular Damage in Preventing Recurrence of Pneumonia During Recovery Based on Combination of Pathogenic Factors
Xin PENG ; Haotian XU ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Kun YANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):249-258
Pneumonia is an infectious disease with high morbidity and mortality worldwide, and its damage to the body is not limited to the acute phase. The theory of combination of pathogenic factors emphasizes that the combination of new pathogens and residual pathogens in the body leads to the occurrence of diseases, which generalizes the causes of recurrence during pneumonia recovery. During the recovery stage of pneumonia, pathological changes such as disturbance of immune homeostasis, persistent low-grade inflammation, and microvascular damage continue to affect the body function, impair the health and quality of life of patients, and increase the risk of secondary infection. According to the theory of traditional Chinese medicine (TCM), pneumonia is caused by deficiency, and Qi deficiency and blood stasis is the core pathogenesis in the recovery stage. At this time, the body is not full of healthy qi and still has residual pathogens, and thus it is susceptible to external pathogenic factors that lead to disease recurrence. As an important part of the TCM philosophy of treating disease before its onset, prevention of recurrence after recovery emphasizes the need for aftercare in the recovery stage to prevent disease recurrence. Based on the pathogenesis theory of combination of pathogenic factors and the pathogenesis of Qi deficiency and blood stasis, this paper discusses the effect and connotation of TCM in regulating immune inflammation and microvascular damage in preventing recurrence of pneumonia during the recovery stage, aiming to develop new ideas for effective prevention and treatment of pneumonia at this stage.
6.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
7.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
8.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
9.Characteristic volatile organic compounds in exhaled breath of coal workers' pneumoconiosis patients by thermal desorption gas chromatography-mass spectrometry
Yazhen HE ; Chunguang DING ; Junyun WANG ; Yuzhen FENG ; Fangda PENG ; Gaisheng LIU ; Fan YANG ; Chunmin ZHANG ; Rui GAO ; Qingyu MENG ; Zhijun WU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(5):571-577
Background Coal workers' pneumoconiosis is a serious occupational disease in China. Exhaled volatile organic compounds (VOCs) can serve as the "breath fingerprint" of internal pathological processes, which provides a theoretical basis for exhaled VOCs to be used as potential non-invasive biomarkers for early diagnosis of coal workers' pneumoconiosis. Objective To screen out the characteristic VOCs and important characteristic VOCs of exhaled air in patients with coal workers' pneumoconiosis, and to explore the potential of these VOCs as biomarkers for early non-invasive diagnosis of the disease. Methods In this study, 27 VOCs in the exhaled breath of 22 patients with stage I coal workers' pneumoconiosis, 77 workers exposed to dust, and 92 healthy controls were quantitatively detected by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Substances with P<0.05 in univariate analysis and variable importance projection (VIP) >1 in supervised orthogonal partial least squares discriminant analysis (OPLS-DA) model were selected as the characteristic VOCs for early diagnosis of coal workers' pneumoconiosis. Age was included in the LASSO regression model as a covariate to screen out important characteristic VOCs, and the diagnostic performance was evaluated by receiver operating characteristic (ROC) curve. Spearman correlation was further used to explore the correlation between important characteristic VOCs and clinical lung function indicators. Results Through univariate analysis and OPLS-DA modeling, 8 VOCs were selected, including 2-methylpentane, 3-methylpentane, n-hexane, methylcyclopentane, n-heptane, methylcyclohexane, 4-methyl-2-pentanone, and 2-hexanone, in exhaled breath of patients with coal workers' pneumoconiosis. The concentrations of 4 VOCs, including 3-methylpentane, n-hexane, 4-methyl-2-pentanone, and 2-hexanone, showed a decreasing trend with the increase of dust exposure years. By LASSO regression, the important characteristic VOCs of the coal workers' pneumoconiosis group and the dust exposure group were n-hexane, methylcyclohexane and 4-methyl-2-pentanone, and the important characteristic VOCs of the coal workers' pneumoconiosis group and the healthy group were 2-methyl-pentane and 4-methyl-2-pentanone. The ROC analysis showed that the area under the curve (AUC) of n-hexane, methylcyclohexane, and 4-methyl-2-pentanone were 0.969, 0.909, and 0.956, respectively, and the AUC of combined diagnosis was 0.988 and its Youden index was 0.961, suggesting that these results can serve as a valuable reference for further research on early diagnosis. The Correlation analysis found that there was a positive correlation between n-hexane and lung function indicators in the important characteristic VOCs, indicating that it could indirectly reflect the obstruction of lung function ventilation, further proving that important characteristic VOCs have the potential to monitor lung function decline. Conclusion Three important characteristic VOCs selected in this study have the potential to be used as non-invasive biomarkers for early diagnosis and disease monitoring of coal workers' pneumoconiosis, and are worthy of further study and verification.
10.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.

Result Analysis
Print
Save
E-mail