1.Evaluation Value of Blood Biomarker Tests for Efficacy of EGFR-TKI in Advanced NSCLC Treatment
Rui FAN ; Yonghui WU ; Zhan GU ; Yanbin PENG ; Lixin WANG
Cancer Research on Prevention and Treatment 2025;52(5):382-387
Objective To analyze the levels of serum CTCs and ctDNA in NSCLC patients receiving first-line EGFR-TKI treatment, and to explore the clinical value of CTCs and ctDNA detection in assessing the efficacy of treatment for advanced lung cancer. Methods A total of 109 NSCLC patients receiving first-line EGFR-TKI treatment were enrolled. Serum tumor markers CEA, CTCs, and ctDNA were detected at baseline and after one month of treatment. Chest CT scans were performed, and treatment efficacy was evaluated based on RECIST1.1 criteria. CTCs were counted by enrichment-staining-computational algorithm to analyze malignant features, while ctDNA was assessed using digital PCR. Results Survival rate was low in patients with abnormal CEA and ctDNA tests at baseline and in patients with reduced serum CTCs after treatment. In the SD subgroup of patients with brain metastases and advanced stage, the PFS benefit was low. Conclusion Patients in the SD subgroup have significantly higher recurrence risks than those in the PR or CR subgroups. Therefore, CTC and ctDNA testing should be applied to patients in the SD subgroup to identify high-risk patients with poor response to EGFR-TKI treatment, intervene with additional treatment promptly, and obtain long progression-free survival.
2.Mitochondrial Function and Regulation in Spermatogenesis and Activation of Caenorhabditis elegans
Zhan-Xin CHANG ; Long MIAO ; Peng WANG
Progress in Biochemistry and Biophysics 2025;52(7):1661-1672
Mitochondria play a pivotal role in spermatogenesis and sperm activation in Caenorhabditis elegans, serving as the primary ATP supplier for cell division and differentiation while also acting as a key regulator of zinc ion homeostasis, membrane dynamics, and apoptotic signaling. This review systematically summarizes the essential mitochondrial mechanisms at different stages of sperm development, highlighting their multifaceted contributions beyond energy metabolism. Mitochondria are crucial for maintaining the health and stability of the gonads by regulating key apoptotic execution proteins that facilitate the proper elimination of damaged or unnecessary germ cells. Additionally, mitochondria dynamically adjust their energy supply to meet the metabolic demands of different stages of germline development. During early spermatogenesis, mitochondria provide ATP to fuel mitotic and meiotic divisions, support cellular differentiation, and regulate H+ and Zn2+ exchange to maintain cytoplasmic homeostasis, thereby ensuring the proper maturation and functionality of sperm cells. As spermatogenesis progresses, mitochondria participate in processing and sorting essential sperm proteins, such as major sperm protein (MSP), and contribute to the formation of membranous organelles (MOs), which are critical for subsequent activation events. During sperm activation, mitochondria play a dual role in ensuring a successful transition from immotile spermatids to fully functional spermatozoa. First, they provide ATP to facilitate pseudopod formation, MO fusion, and ion channel regulation, all of which are essential for sperm motility and fertilization potential. Second, mitochondria regulate the quality and quantity of functional mitochondria within sperm cells through mitopherogenesis—a recently discovered process in which mitochondrial vesicles are selectively released, ensuring that only healthy mitochondria are retained. This quality-control mechanism optimizes mitochondrial function, which is crucial for sustaining sperm motility and longevity. Beyond their traditional role in energy metabolism, mitochondria may also contribute to protein synthesis during spermatogenesis and activation. Recent evidence suggests that mitochondrial ribosomes actively translate specific proteins required for sperm function, challenging the long-standing belief that spermatozoa do not engage in de novo protein synthesis after differentiation. This emerging perspective raises important questions about the role of mitochondria in regulating sperm activation at the molecular level, particularly in modulating oxidative phosphorylation (OXPHOS) protein composition to optimize ATP production. In summary, mitochondria serve as both the central energy hub and a crucial regulatory factor in sperm activation, metabolic homeostasis, and reproductive success. Their involvement extends beyond ATP generation to include apoptotic regulation, ion homeostasis, vesicle-mediated mitochondrial quality control, and potential contributions to protein synthesis. Understanding these mitochondrial functions in C. elegans not only deepens our knowledge of nematode reproductive biology, but also provides valuable insights into broader mechanisms governing mitochondrial regulation in germline cells across species. These findings open new avenues for future research into the interplay between mitochondria, energy metabolism, and sperm function, with potential implications for reproductive health and fertility studies.
3.Recent advances in small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase
Hui-nan JIA ; Rui-fang JIA ; Ji-wei ZHANG ; Yuan-min JIANG ; Chuan-feng LIU ; Ying ZHANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(1):43-60
Influenza virus causes serious threat to human life and health. Due to the inherent high variability of influenza virus, clinically resistant mutant strains of currently approved anti-influenza virus drugs have emerged. Therefore, it is urgent to develop antiviral drugs with new targets or mechanisms of action. RNA-dependent RNA polymerase is directly responsible for viral RNA transcription and replication, and plays key roles in the viral life cycle, which is considered an important target of anti-influenza drug design. From the point of view of medicinal chemistry, this review summarizes current advances in diverse small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase, hoping to provide valuable reference for development of novel antiviral drugs.
4.Construction of a machine learning model for identifying clinical high-risk carotid plaques based on radiomics
Xiaohui WANG ; Xiaoshuo LÜ ; ; Zhan LIU ; Yanan ZHEN ; Fan LIN ; Xia ZHENG ; Xiaopeng LIU ; Guang SUN ; Jianyan WEN ; Zhidong YE ; Peng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):24-34
Objective To construct a radiomics model for identifying clinical high-risk carotid plaques. Methods A retrospective analysis was conducted on patients with carotid artery stenosis in China-Japan Friendship Hospital from December 2016 to June 2022. The patients were classified as a clinical high-risk carotid plaque group and a clinical low-risk carotid plaque group according to the occurrence of stroke, transient ischemic attack and other cerebrovascular clinical symptoms within six months. Six machine learning models including eXtreme Gradient Boosting, support vector machine, Gaussian Naive Bayesian, logical regression, K-nearest neighbors and artificial neural network were established. We also constructed a joint predictive model combined with logistic regression analysis of clinical risk factors. Results Finally 652 patients were collected, including 427 males and 225 females, with an average age of 68.2 years. The results showed that the prediction ability of eXtreme Gradient Boosting was the best among the six machine learning models, and the area under the curve (AUC) in validation dataset was 0.751. At the same time, the AUC of eXtreme Gradient Boosting joint prediction model established by clinical data and carotid artery imaging data validation dataset was 0.823. Conclusion Radiomics features combined with clinical feature model can effectively identify clinical high-risk carotid plaques.
5.Not Available.
Letian SONG ; Shenghua GAO ; Bing YE ; Mianling YANG ; Yusen CHENG ; Dongwei KANG ; Fan YI ; Jin-Peng SUN ; Luis MENÉNDEZ-ARIAS ; Johan NEYTS ; Xinyong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica B 2024;14(1):87-109
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
6.Usage and Dosage Analysis and Countermeasures for Development of Compound Preparations of Han Dynasty Famous Classical Formulas
Yan JIN ; Bing LI ; Wei ZHANG ; Huasheng PENG ; Huamin ZHANG ; Huihui LIU ; Lin ZHANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):1-10
In order to provide a reference basis for the development of relevant compound preparations, this article takes a comprehensive analysis of the usage and dosage of famous classical formulas in Han dynasty from various perspectives, and gives corresponding countermeasures on this basis. Through the comprehensive analysis of the classification and statistics of Zhongjing's medication characteristics, decoction methods, administration and dosage, and combining conversion methods of weights and measures by ancient medical practitioners, along with the dosage and administration of the listed Han dynasty famous classical formulas, it was found that the "Jiangxi method" served as a general guideline for administration according to Zhongjing's original text. This method allowed for flexible dosing based on the conversion of the ancient measurements to modern equivalents[13.8 g per Liang(两)], ensuring the safe and effective medication of these formulas. After combing, it is found that although the dosage of single medicine is large in famous classical formulas from Han dynasty, the administration is flexible. The crude drug amount per administration serves as the foundational dose, with the frequency of administration adjusted flexibly according to the condition. This dosing approach becomes the key for the rational development of compound formulations of famous classical formulas. Based on the conclusions of the study, it is recommended that when developing compound formulations of famous classical formulas in Han dynasty, the original administration method and dosage should be respected. The original crude drug amount per administration should be considered as the daily foundational dose, with the frequency of administration described within a range(1 to N times per day, where N is the maximum number of administrations as per the original text). The specific frequency of administration can be adjusted flexibly by clinical practitioners based on the individual condition. This approach should also be adopted in toxicological studies, where the dosage per administration serves as the basis for toxicity research, and the toxicity profile at the maximum administration frequency should be observed, providing guidance on the clinical safety range. Corresponding drug labels should provide information within a range to indicate toxicological risk intervals.
7.Research progress of anti-gout small molecules targeting the NLRP3 inflammasome
Zhen-qian WANG ; Zhi-jiao ZHANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(3):543-553
Currently, clinically used drugs for the treatment of gout inflammation, such as colchicine, nonsteroidal anti-inflammatory drugs, and glucocorticoids, can only relieve the pain of joint inflammation and have severe hepatorenal toxicity and multiple organ adverse reactions. The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key complex that induces the onset of gout inflammation and has become a crucial target in the development of anti-gout drugs. This article reviews the research progress of anti-gout small molecules targeting the NLRP3 inflammasome and their bioactivity evaluation methods in the past five years, in order to provide information for the development of specific drugs for the treatment of gout inflammation.
8.Recent advances in drug screening methods of SARS-CoV-2 spike protein
Li-de HU ; Chuan-feng LIU ; Ping LI ; Guan-yu DONG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(2):298-312
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious impact on global public health and the economy. SARS-CoV-2 infiltrates host cells
9.Recent advances in bioactivity evaluation methods of uric acid-lowering compounds
Danhui QI ; Xiaoyu SHI ; Xinyong LIU ; Peng ZHAN
Journal of China Pharmaceutical University 2024;55(2):167-180
Abstract: Hyperuricemia is a metabolic disease caused by elevated uric acid in the body, and is closely related to the increased risk of cardiovascular disease, metabolic disorders, and renal complications. In the development process of uric acid-lowering drugs, activity evaluation is a crucial step. At present, the activity screening methods of uric acid-lowering drugs can be roughly divided into two categories: in vitro and in vivo. In vitro screening is mainly for such targets as xanthine oxidase, urate transporters, and purine nucleoside phosphorylase, etc.; while in vivo screening is achieved by rodent, poultry and organoid models. In this article, the activity evaluation methods for uric acid-lowering compounds are comprehensively summarized both in vitro and in vivo, aiming to provide some insight for the development of uric acid-lowering drugs.
10.Association between index-ring finger length ratio and polymorphisms of 6 phalange-bone development related genes
Meng-Yi YANG ; Shi-Bo NIU ; Jing ZHANG ; Liang PENG ; Jie DANG ; Zhan-Bing MA ; Hong LU ; Zheng-Hao HUO
Acta Anatomica Sinica 2024;55(2):181-187
Objective To investigate the association of 13 single nucleotide polymorphism(SNP)sites in 6 phalange-bone development related genes[fibroblast growth factor receptor 2(FGFR2),indian hedgehog signaling molecule(IHH),Msh homeobox 1(MSX1),Runx family transcription factor 2(RUNX2),SRY-box transcription factor 9(SOX9),Wnt family member 5A(WNT5A)]with human index-ring finger length ratio(2D∶4D).Methods Digital cameras were used to take frontal photographs of the hands of 731 college students(358 males and 373 females)in Ningxia,and image analysis software was used to mark anatomical points and measure finger lengths of index(2th)and ring(4th);genotyping of 13 SNP sites(rs1047057,rs755793,rs41258305,rs3731881,rs3100776,rs12532,rs3821949,rs45585135,rs3749863,rs1042667,rs12601701,rs1829556,rs3732750)for 6 genes by multiplex PCR;One-Way ANOVA or independent sample t-test indirectly assessed the association between 2D∶4D and 13 SNP sites.Results Both left and right hand 2D∶4D were significantly higher in females than males in Ningxia college students(all P<0.01);no statistically significant differences in genotype and allele frequencies of the 13 SNP sites among different sexes(all P>0.05);among different sexes,male left hand 2D∶4D was significantly associated with the genotype of SOX9 gene rs12601701 site(P<0.05)and right hand 2D∶4D was significantly associated with the genotype of WNT5A gene rs1829556 site(P<0.05);the female right hand 2D∶4D was significantly associated with the MSX1 gene rs12532(P<0.01)and rs3821949(P<0.05)sites genotypes.Conclusion SOX9(rs12601701),WNT5A(rs1829556)and MSX1(rs12532 and rs3821949)gene polymorphisms may be associated with the formation of 2D∶4D in Ningxia population.

Result Analysis
Print
Save
E-mail