1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Effect of paeoniflorin regulating PI3K/Akt signaling pathway on inflammatory response in diabetic retinopathy rats
Zhaoliang ZHU ; Shuwei BAI ; Peng DUAN ; Huping SONG ; Tao CHEN
International Eye Science 2025;25(3):365-371
AIM:To investigate the effect of paeoniflorin on the inflammatory response of diabetic retinopathy rats by regulating phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)signaling pathway.METHODS: A total of 70 SPF male SD rats were selected, and 12 rats were randomly selected as the control group(normal saline gavage). The remaining 58 rats were fed with high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin(STZ)to establish diabetic rat models. Rats with diabetic retinopathy were randomly divided into model group(normal saline), paeoniflorin low-dose group(100 mg/kg paeoniflorin), paeoniflorin high-dose group(200 mg/kg paeoniflorin)and metformin group(100 mg/kg metformin), with 12 rats in each group. The body mass of the rats in each group were compared. HE staining was used to observe the pathological changes of the rat retina. Automatic biochemical analyzer was used to detect the levels of fasting blood glucose, glycosylated hemoglobin, serum high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), total cholesterol and triglyceride in the rats. Enzyme-linked immunosorbent assay was used to detect the levels of serum superoxide dismutase(SOD), reactive oxygen species(ROS), malondialdehyde(MDA), glutathione peroxidase(GSH-PX), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6)and interleukin-1β(IL-1β)in the rats. Western blot was used to detect the expressions of Occludin, p-PI3K, tight junction protein-1(ZO-1), p-Akt and VE-Cadherin in the rat retina.RESULTS: The expression levels of Occludin, ZO-1 and VE-cadherin in low-dose and high-dose paeoniflora groups were higher than those in the model group, while the expression levels of TNF-α, IL-6, IL-1β, p-PI3K and p-Akt in serum were lower than those in the model group. The high-dose group of paeoniflorin was significantly better than the low-dose group of paeoniflorin(all P<0.05).CONCLUSION: Paeoniflorin may reduce inflammatory response in diabetic retinopathy rats by inhibiting PI3K/Akt signaling pathway.
3.Effect of paeoniflorin regulating PI3K/Akt signaling pathway on inflammatory response in diabetic retinopathy rats
Zhaoliang ZHU ; Shuwei BAI ; Peng DUAN ; Huping SONG ; Tao CHEN
International Eye Science 2025;25(3):365-371
AIM:To investigate the effect of paeoniflorin on the inflammatory response of diabetic retinopathy rats by regulating phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)signaling pathway.METHODS: A total of 70 SPF male SD rats were selected, and 12 rats were randomly selected as the control group(normal saline gavage). The remaining 58 rats were fed with high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin(STZ)to establish diabetic rat models. Rats with diabetic retinopathy were randomly divided into model group(normal saline), paeoniflorin low-dose group(100 mg/kg paeoniflorin), paeoniflorin high-dose group(200 mg/kg paeoniflorin)and metformin group(100 mg/kg metformin), with 12 rats in each group. The body mass of the rats in each group were compared. HE staining was used to observe the pathological changes of the rat retina. Automatic biochemical analyzer was used to detect the levels of fasting blood glucose, glycosylated hemoglobin, serum high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), total cholesterol and triglyceride in the rats. Enzyme-linked immunosorbent assay was used to detect the levels of serum superoxide dismutase(SOD), reactive oxygen species(ROS), malondialdehyde(MDA), glutathione peroxidase(GSH-PX), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6)and interleukin-1β(IL-1β)in the rats. Western blot was used to detect the expressions of Occludin, p-PI3K, tight junction protein-1(ZO-1), p-Akt and VE-Cadherin in the rat retina.RESULTS: The expression levels of Occludin, ZO-1 and VE-cadherin in low-dose and high-dose paeoniflora groups were higher than those in the model group, while the expression levels of TNF-α, IL-6, IL-1β, p-PI3K and p-Akt in serum were lower than those in the model group. The high-dose group of paeoniflorin was significantly better than the low-dose group of paeoniflorin(all P<0.05).CONCLUSION: Paeoniflorin may reduce inflammatory response in diabetic retinopathy rats by inhibiting PI3K/Akt signaling pathway.
4.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
5.Pharmacodynamic Substances and Mechanisms of Da Chengqitang in Treating Stroke: A Review
Yizhi YAN ; Xinyi LIU ; Yang DUAN ; Miaoqing LONG ; Chaoya LI ; Qiang LI ; Yi'an CHEN ; Shasha YANG ; Yue ZHANG ; Peng ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):297-306
Stroke is the main cause of death and disability among adults in China and is characterized by high incidence, disability, mortality, and recurrence rates. The combination of traditional Chinese and Western medicine has great potential in treating stroke and its sequelae. The classic traditional Chinese medicine prescription Da Chengqitang (DCQT) has a long history and proven efficacy in treating stroke. Clinically, DCQT is often used to treat stroke and its sequelae. However, the number and quality of clinical trials of DCQT in treating stroke need to be improved. Because of the insufficient basic research, the active ingredients and multi-target mechanism of action of DCQT remain unclear. Our research group has previously confirmed that DCQT can effectively reverse neurological damage, reduce iron deposition, and downregulate the levels of pro-inflammatory cytokines in the rat model of hemorrhagic stroke. The treatment mechanism is related to the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway and p38 mitogen-activated protein kinase (MAPK) signaling-mediated microglia activation. To clarify the pharmacodynamic basis and anti-stroke mechanism of DCQT, this article reviews the research progress in the treatment of stroke with DCQT in terms of clinical trials, pharmacodynamic material basis, safety evaluation, and mechanisms of absorbed components. This article summarizes 45 major phytochemical components of DCQT, 11 of which are currently confirmed absorbed components. Among them, emodin, rhein, chrysophanol, aloe-emodin, synephrine, hesperidin, naringin, magnolol, and honokiol can be used as quality markers (Q-markers) of DCQT. The mechanism of DCQT in treating stroke is complex, involving regulation of inflammatory responses, neuronal damage, oxidative stress, blood-brain barrier, brain-derived neurotrophic factor, and anti-platelet aggregation. This article helps to deeply understand the pharmacodynamic basis and mechanism of DCQT in treating stroke and provides a theoretical basis for the clinical application of DCQT in treating stroke and the development of stroke drugs.
6.Progress of Anti-osteoporosis Research of Traditional Chinese Medicine Based on Zebrafish Model
Henghong WANG ; Xinyu FAN ; Yihan GAO ; Zhilue LUO ; Peng DUAN ; Yunfeng ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):323-330
Osteoporosis (OP) is a systemic metabolic disease with a strong correlation with age. The prevalence of osteoporosis is rising annually as a consequence of the growing issue of population ageing. The current treatments for OP have numerous shortcomings. In contrast, traditional Chinese medicine has a long history and a rich species diversity. Furthermore, recent years have seen an increase in the number of studies examining the anti-OP properties of traditional Chinese medicine. This may provide a safe and effective alternative strategy for the treatment of OP. The zebrafish, due to its favourable optical transparency and high homology with human genes, has been extensively employed as an animal research model in the investigation of human skeletal-related disease mechanisms and drug screening. This paper presents a review of anti-osteoporosis studies of traditional Chinese medicine using zebrafish as a model for osteoporosis. It also provides a summary of the experimental evaluation methods involved in such studies, an analysis of the current status of traditional Chinese medicine in the treatment of osteoporosis using zebrafish as a model, and a summary of the mechanism of action and the signalling pathways involved in traditional Chinese medicine in the anti-osteoporosis treatment of zebrafish. The current research status of Chinese medicine in the treatment of OP was analysed, as well as the mechanism of action of Chinese medicine against OP and the signalling pathways involved. Furthermore, the advantages and disadvantages of various zebrafish modelling methods of OP were compared with those of traditional animal models. The objective of this study is to provide a reference for the evaluation method of the zebrafish model in the study of bone-related diseases, as well as for the study of the mechanism of action of traditional Chinese medicine against OP and for the reference of the research and development of new drugs.
8.A Review of the Data-Driven Policy Making of Medical Financial Assistance for Rare Diseases: Current Situation, Trends and Opportunities
Yuehan DUAN ; Zhiyu FAN ; Qianhui LI ; Zhaiwen PENG
JOURNAL OF RARE DISEASES 2025;4(1):39-45
The inherent clinical uncertainties, substantial costs, and small patient cohorts of orphan drugs limit the applicability of randomized controlled trial (RCT)-based health technology assessments (HTAs) in guiding coverage criteria, sustainable financing models, and equitable reimbursement frameworks for medical financial assistance policies for rare diseases.The digital transformation in healthcare system leads to solutions to the challenges in designing the policy by using data-driven decision-making. This article summarizes the decision-making issues in policy design, discusses the current status and trends of digital transformation, and analyzes the important new opportunities for AI-driven policy design for medical financial assistance policies for rare diseases. Decision-making that is digital intelligence driven and using techniques such as big data analytics and real-world research methods will enhance targeting efficiency, improve the quality of financing, and realize the performance-based reimbursement in the medical financial assistance, providing significant value in facilitating the policy reform and development for rare diseases healthcare.
9.Exploring the mechanisms of Hexue Mingmu Tablets in improving diabetic retinopathy of zebrafish based on transcriptomics
Duo ZHAO ; Zilu ZHU ; Peng DUAN ; Jiaolong HUANG ; Meijuan ZHU ; Min ZHANG
International Eye Science 2025;25(7):1046-1055
AIM: To investigate the mechanism of Hexue Mingmu Tablets(HXMMT)in improving diabetic retinopathy(DR)based on transcriptomics.METHODS: Zebrafish DR models were established by 3-day glucose induction(130 mmol/L)starting at 3 days post-fertilization(dpf). Larvae were randomized into four groups: control group(CG; aquaculture water), model group(MG; 130 mmol/L glucose), low-dose HXMMT treatment group(L-HX; 130 mmol/L glucose +7.5 mg/L HXMMT), and high-dose HXMMT treatment group(H-HX; 130 mmol/L glucose +75 mg/L HXMMT), with a 3-day intervention period until 6 dpf. The area and length of eyes, and body length of zebrafish were observed by stereomicroscopy, retinal morphology was observed by hematoxylin-eosin staining(HE), and retinal vessel diameter was observed under fluorescence microscope. Differentially expressed genes(DEGs)were identified by RNA-sequencing(RNA-seq)technology to further elucidate the molecular mechanism of HXMMT in improving DR in zebrafish, and the sequencing accuracy was validated through quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS: HE staining demonstrated that the intervention with HXMMT significantly improved the disordered cell arrangement, widened gaps, and thickened inner nuclear layer(INL)in ganglion cell layer GCL); retinal vascular diameter quantification revealed that the retinal vessel diameter of the MG significantly increased compared with the CG, and it was significantly changed after the intervention of HXMMT, with significant efficacy in the H-HX(P<0.05); transcriptomics profiling identified 1 470 reversed DEGs, predominantly enriched in the AMPK signaling pathway, FoxO signaling pathway, retinal developmental processes, and tight junction regulation. Technical validation confirmed strong correlation between qRT-PCR and RNA-seq data(R2=0.8571, P<0.05).CONCLUSION: HXMMT may improve retinal vascular microcirculation disorders in DR by regulating core targets including vsx1, pde6c, arr3a, plk1, fbp1b, foxo1a, pcna, and cdk1, as well as synergistically modulating processes such as retinal development in camera-type eyes, visual perception, microtubule cytoskeletal organization, tight junctions, and the AMPK signaling pathway, Foxo signaling pathway.
10.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
Abstract
Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.

Result Analysis
Print
Save
E-mail