1.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
2.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
3.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
4.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
5.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
6.Pregnancy Benefit of Acupuncture on in vitro Fertilization: A Systematic Review and Meta-Analysis.
Hao-Ran ZHANG ; Cheng ZHANG ; Pei-Hong MA ; Cheng-Yi SUN ; Chong-Yang SUN ; Xiao-Yu LIU ; Zhen-Qing PU ; Yu-Han LIN ; Bao-Yan LIU ; Cun-Zhi LIU ; Shi-Yan YAN
Chinese journal of integrative medicine 2023;29(11):1021-1032
BACKGROUND:
Currently, more and more infertility couples are opting for combined acupuncture to improve success rate of in vitro fertilization (IVF). However, evidence from acupuncture for improving IVF pregnancy outcomes remains a matter of debate.
OBJECTIVE:
To quantitatively summarized the evidence of the efficacy of acupuncture among women undergoing IVF by means of systematic review and meta-analysis.
METHODS:
Four English (PubMed, Web of Science, EMBASE, and Cochrane Register of Controlled Clinical Trials) and Four Chinese databases (Wanfang Databases, Chinese National Knowledge Infrastructure, Chinese Science and Technology Periodical Database, and SinoMed) were searched from database inception until July 2, 2023. Randomized controlled trials (RCTs) that evaluated the acupuncture's effects for women undergoing IVF were included. The subgroup analysis was conducted with respect to the age of participants, different acupuncture types, type of control, acupuncture timing, geographical origin of the study, whether or not repeated IVF failure, and acupuncture sessions. Sensitivity analyses were predefifined to explore the robustness of results. The primary outcomes were clinical pregnancy rate (CPR) and live birth rate (LBR), and the secondary outcomes were ongoing pregnancy rate and miscarriage rate. Random effects model with I2 statistics were used to quantify heterogeneity. Publication bias was estimated by funnel plots and Egger's tests.
RESULTS:
A total of 58 eligible RCTs representing 10,968 women undergoing IVF for pregnant success were identifified. Pooled CPR and LBR showed a signifificant difference between acupuncture and control groups [69 comparisons, relative risk (RR) 1.19, 95% confifidence intervals (CI) 1.12 to 1.25, I2=0], extremely low evidence; 23 comparisons, RR 1.11, 95%CI 1.02 to 1.21, I2=14.6, low evidence, respectively). Only transcutaneous electrical acupoint stimulation showed a positive effect on both CPR (16 comparisons, RR 1.17, 95%CI 1.06 to 1.29; I2=0, moderate evidence) and LBR (9 comparisons, RR 1.20, 95%CI 1.04 to 1.37; I2=8.5, extremely low evidence). Heterogeneity across studies was found and no studies were graded as high-quality evidence.
CONCLUSION
Results showed that the convincing evidence levels on the associations between acupuncture and IVF pregnant outcomes were relatively low, and the varied methodological design and heterogeneity might inflfluence the fifindings. (Registration No. PROSPERO CRD42021232430).
Pregnancy
;
Female
;
Humans
;
Live Birth
;
Fertilization in Vitro/methods*
;
Pregnancy Outcome
;
Abortion, Spontaneous
;
Acupuncture Therapy
7.Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota
Zhang ZHENG-WEI ; Cong LIN ; Peng RAN ; Han PEI ; Ma SHU-RONG ; Pan LI-BIN ; Fu JIE ; Yu HANG ; Wang YAN ; Jiang JIAN-DONG
Journal of Pharmaceutical Analysis 2021;11(5):628-637
Berberine(BBR)is an isoquinoline alkaloid extracted from Coptis chinensis that improves diabetes,hyperlipidemia and inflammation.Due to the low oral bioavailability of BBR,its mechanism of action is closely related to the gut microbiota.This study focused on the CYP51 enzyme of intestinal bacteria to elucidate a new mechanism of BBR transformation by demethylation in the gut microbiota through multiple analytical techniques.First,the docking of BBR and CYP51 was performed;then,the pharma-cokinetics of BBR was determined in ICR mice in vivo,and the metabolism of BBR in the liver,kidney,gut microbiota and single bacterial strains was examined in vitro.Moreover,16S rRNA analysis of ICR mouse feces indicated the relationship between BBR and the gut microbiota.Finally,recombinant E.coli con-taining cyp51 gene was constructed and the CYP51 enzyme lysate was induced to express.The metabolic characteristics of BBR were analyzed in the CYP51 enzyme lysate system.The results showed that CYP51 in the gut microbiota could bind stably with BBR,and the addition of voriconazole(a specific inhibitor of CYP51)slowed down the metabolism of BBR,which prevented the production of the demethylated metabolites thalifendine and berberrubine.This study demonstrated that CYP51 promoted the deme-thylation of BBR and enhanced its intestinal absorption,providing a new method for studying the metabolic transformation mechanism of isoquinoline alkaloids in vivo.
8.Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia.
Libin PAN ; Pei HAN ; Shurong MA ; Ran PENG ; Can WANG ; Weijia KONG ; Lin CONG ; Jie FU ; Zhengwei ZHANG ; Hang YU ; Yan WANG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2020;10(2):249-261
The progression of hyperuricemia disease is often accompanied by damage to renal function. However, there are few studies on hyperuricemia nephropathy, especially its association with intestinal flora. This study combines metabolomics and gut microbiota diversity analysis to explore metabolic changes using a rat model as well as the changes in intestinal flora composition. The results showed that amino acid metabolism was disturbed with serine, glutamate and glutamine being downregulated whilst glycine, hydroxyproline and alanine being upregulated. The combined glycine, serine and glutamate could predict hyperuricemia nephropathy with an area under the curve of 1.00. Imbalanced intestinal flora was also observed. , , , , and other conditional pathogens increased significantly in the model group, while and , the short-chain fatty acid producing bacteria, declined greatly. At phylum, family and genus levels, disordered nitrogen circulation in gut microbiota was detected. In the model group, the uric acid decomposition pathway was enhanced with reinforced urea liver-intestine circulation. The results implied that the intestinal flora play a vital role in the pathogenesis of hyperuricemia nephropathy. Hence, modulation of gut microbiota or targeting at metabolic enzymes, , urease, could assist the treatment and prevention of this disease.
9.Suggestion and explanation of pediatric cardiomyopathy.
Chinese Journal of Pediatrics 2012;50(6):472-474

Result Analysis
Print
Save
E-mail