1.Outcomes of identifying enlarged vestibular aqueduct (Mondini malformation) related gene mutation in Mongolian people
Jargalkhuu E ; Tserendulam B ; Maralgoo J ; Zaya M ; Enkhtuya B ; Ulzii B ; Ynjinlhkam E ; Chuluun-Erdene Ts ; Chen-Chi Wu ; Cheng-Yu Tsai ; Yin-Hung Lin ; Yi-Hsin Lin ; Yen-Hui Chan ; Chuan-Jen Hsu ; Wei-Chung Hsu ; Pei-Lung Chen
Mongolian Journal of Health Sciences 2025;87(3):8-15
Background:
Hearing loss (HL) is one of the most common sensory disorders,
affecting over 5-8% of the world's population. Approximately half of HL cases are
attributed to genetic factors. In hereditary deafness, about 75-80% is inherited
through autosomal recessive inheritance, and common pathogenic genes include
GJB2 and SLC26A4. Pathogenic variants in the SLC26A4gene are the leading
cause of hereditary hearing loss in humans, second only to the GJB2 gene. Variants in the SLC26A4gene cause hearing loss, which can be non-syndromic autosomal recessive deafness (DFNB4, OMIM #600791) associated with enlarged
vestibular aqueduct (EVA) or Pendred syndrome (Pendred, OMIM #605646).
DFNB4 is characterized by sensorineural hearing loss combined with EVA or less
common cochlear malformation defect. Pendred syndrome is characterized by bilateral sensorineural hearing loss with EVA and an iodine defect that can lead to
thyroid goiter. Currently, it is known that EVA is associated with variants in the
SLC26A4 gene and is a penetrant feature of SLC26A4-related HL. Predominant
mutations in these genes differ significantly across populations. For instance, predominant SLC26A4 mutations differ among populations, including p.T416P and
c.1001G>A in Caucasians, p.H723R in Japanese and Koreans, and c.919-2A>G
in Han Taiwanese and Han Chinese. On the other hand, there has been no study
of hearing loss related to SLC26A4 gene variants among Mongolians, which is the
basis of our research.
Aim:
We aimed to identify the characteristics of the SLC26A4 gene variants in
Mongolian people with Enlarged vestibular aqueduct and Mondini malformation.
Materials and Methods:
In 2022-2024, We included 13 people with hearing loss
and enlarged vestibular aqueduct, incomplete cochlea (1.5 turns of the cochlea
with cystic apex- incomplete partition type II- Mondini malformation) were examined by CT scan of the temporal bone in our study. WES (Whole exome sequencing) analysis was performed in the Genetics genetic-laboratory of the National
Taiwan University Hospital.
Results:
Genetic analysis revealed 26 confirmed pathogenic variants of bi-allelic
SLC26A4 gene of 8 different types in 13 cases, and c.919-2A>G variant was dominant with 46% (12/26) in allele frequency, and c.2027T>A (p.L676Q) variant 19%
(5/26), c.1318A>T(p.K440X) variant 11% (3/26), c.1229C>T (p.T410M) variant 8%
(2/26) ) , c.716T>A (p.V239D), c.281C>T (p.T94I), c.1546dupC, and c.1975G>C
(p.V659L) variants were each 4% (1/26)- revealed. Two male children, 11 years
old (SLC26A4: c.919-2A>G) and 7 years old (SLC26A4: c.919-2A>G:, SLC26A4:
c.2027T>A (p.L676Q))had history of born normal hearing and progressive hearing
loss.
Conclusions
1. 26 variants of bi-allelic SLC26A4 gene mutation were detected
in Mongolian people with EVA and Mondini malformation, and c.919-2A>G was
the most dominant allele variant, and rare variants such as c.1546dupC, c.716T>A
(p.V239D) were detected.
2. Our study shows that whole-exome sequencing (WES) can identify gene
mutations that are not detected by polymerase chain reaction (PCR) or NGS analysis.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
8.Clinical significance of tumor budding as a marker for predicting distant metastasis after radical gastrectomy in elderly patients
Yu JIE ; Pei WANG ; Lin YAO ; Yimeng SUN ; Wei XU ; Yue QIU ; Dapeng JIANG ; Xiaoyan WANG ; Yu FAN
Chinese Journal of Geriatrics 2024;43(3):311-316
Objective:To investigate the clinical significance of tumor budding as an indicator of postoperative distant organ metastasis after radical gastrectomy in elderly patients diagnosed with gastric cancer.Methods:The clinical and pathological data of 124 elderly patients who experienced metastasis after undergoing radical gastrectomy were retrospectively analyzed.The analysis was conducted from March 2015 to June 2022, focusing on the clinicopathological factors that influenced the occurrence of postoperative distant metastasis in these patients.Tumor budding in gastric cancer tissues was assessed using hematoxylin-eosin staining, and its clinical significance was analyzed.Results:The tumor budding grade of gastric cancer tissues showed a significant correlation with vascular invasion( χ2=6.731, P=0.009), the number of lymph node metastases( rs=0.481, P<0.001), and the time of distant metastasis( rs=-0.450, P<0.001).In the univariate analysis, factors such as tumor budding grade, tumor size, vascular invasion, postoperative chemotherapy, cancerous nodule, preoperative serum carbohydrate antigen 125, and the number of lymph node metastases were found to influence distant metastasis-free survival after radical gastrectomy in elderly patients(all P<0.05).The multifactorial analysis also indicated that tumour outgrowth grade was an important independent prognostic factor for postoperative distant metastasis in elderly gastric cancer patients( HR=3.731, P<0.001). Conclusions:The findings of this study indicate that tumor budding may serve as a potential marker for predicting distant organ metastasis in elderly patients who have undergone radical gastrectomy.This discovery holds significant clinical implications.
9.Orthopaedic robot assisted closed reduction and cannulated screw internal fixation for the treatment of femoral neck fractures
Shou-Hai JIANG ; Chuan-Kai ZHANG ; Fang-Teng JIA ; Qiang CHEN ; Meng XU ; Pei-Lin YANG ; Yu-Shuai ZHANG
China Journal of Orthopaedics and Traumatology 2024;37(2):119-123
Objective To investigate the preliminary clinical effect of closed reduction and cannulated nail internal fixa-tion for femoral neck fracture assisted by robot navigation and positioning system.Methods From July 2019 to January 2020,16 cases of femoral neck fracture(navigation group)were treated with closed reduction and internal fixation guided by robot system,including 7 males and 9 females,aged 25 to 72 years old with an average of(53.61±5.45)years old;Garden classification of fracture:3 cases of type Ⅰ,3 cases of type Ⅱ,8 cases of type Ⅲ,2 cases of type Ⅳ.Non navigation group(control group):20 cases of femoral neck fracture were treated with closed reduction and hollow nail internal fixation,8 males and 12 females,aged 46 to 70 years old with an average of(55.23±4.64)years old;Garden type Ⅰ in 2 cases,type Ⅱ in 4 cases,type Ⅲ in 11 cases,type Ⅳ in 3 cases.The operation time,fluoroscopy times,guide needle drilling times,screw adjustment times,intraoperative bleeding volume and other indicators of two groups were evaluated.Results Both groups were followed up for 12 to 18 months with an average of(15.6±2.8)months.The fractures of both groups were healed without delayed union and nonunion.There was no significant difference in healing time between two groups(P=0.782).There was no significant differ-ence in Harris scores between two groups at the last follow-up(P=0.813).There was no significant difference in operation time between two groups(P>0.05).There were significant differences between two groups in fluoroscopy times,guide needle drilling times,hollow screw replacement times,and intraoperative bleeding volume(P<0.05).Conclusion Closed reduction and hollow screw internal fixation assisted by robot navigation system for femoral neck fracture has the advantages of minimally invasive operation,precise screw placement,and reduction of X-ray radiation damage during operation.
10.Development of a prediction model for incidence of diabetic foot in patients with type 2 diabetes and its application based on a local health data platform
Yexian YU ; Meng ZHANG ; Xiaowei CHEN ; Lijia LIU ; Pei LI ; Houyu ZHAO ; Yexiang SUN ; Hongyu SUN ; Yumei SUN ; Xueyang LIU ; Hongbo LIN ; Peng SHEN ; Siyan ZHAN ; Feng SUN
Chinese Journal of Epidemiology 2024;45(7):997-1006
Objective:To construct a diabetes foot prediction model for adult patients with type 2 diabetes based on retrospective cohort study using data from a regional health data platform.Methods:Using Yinzhou Health Information Platform of Ningbo, adult patients with newly diagnosed type 2 diabetes from January 1, 2015 to December 31, 2022 were included in this study and divided randomly the train and test sets according to the ratio of 7∶3. LASSO regression model and bidirectional stepwise regression model were used to identify risk factors, and model comparisons were conducted with net reclassification index, integrated discrimination improvement and concordance index. Univariate and multivariate Cox proportional hazard regression models were constructed, and a nomogram plot was drawn. Area under the curve (AUC) was calculated as a discriminant evaluation indicator for model validation test its calibration ability, and calibration curves were drawn to test its calibration ability.Results:No significant difference existed between LASSO regression model and bidirectional stepwise regression model, but the better bidirectional stepwise regression model was selected as the final model. The risk factors included age of onset, gender, hemoglobin A1c, estimated glomerular filtration rate, taking angiotensin receptor blocker and smoking history. AUC values (95% CI) of risk outcome prediction at year 5 and 7 were 0.700 (0.650-0.749) and 0.715(0.668-0.762) for the train set and 0.738 (0.667-0.801) and 0.723 (0.663-0.783) for the test set, respectively. The calibration curves were close to the ideal curve, and the model discrimination and calibration powers were both good. Conclusions:This study established a convenient prediction model for diabetic foot and classified the risk levels. The model has strong interpretability, good discrimination power, and satisfactory calibration and can be used to predict the incidence of diabetes foot in adult patients with type 2 diabetes to provide a basis for self-assessment and clinical prediction of diabetic foot disease risk.

Result Analysis
Print
Save
E-mail