1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Role of Ferroptosis in Osteoarthritis and Traditional Chinese Medicine Intervention: A Review
Xiaojing GUO ; Huan QIN ; Dongliang XIANG ; Yan WANG ; Li ZHANG ; Bo ZHANG ; Shujin WANG ; Xiaotong LI ; Mingyue ZHAO ; Shanhong WU ; Fei PEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):263-272
Osteoarthritis (OA) is characterized by articular cartilage degeneration, synovial hyperplasia, hyperosteogeny, and narrowing of joint space, which can be caused by trauma, inflammation, and other factors. With the increasing global population aging, the incidence of OA is rising year by year, making it a major public health problem that urgently needs to be addressed. Exploring effective treatment schemes is particularly important. The pathogenesis of OA is complex, including oxidative stress, autophagy, and apoptosis. Recent studies have found that ferroptosis, a new type of cell death, is also an important pathogenic factor in OA, characterized by a series of complex changes such as iron ion accumulation, glutathione (GSH) depletion, and mitochondrial dysfunction. Research shows that inhibiting ferroptosis in chondrocytes can promote chondrocyte proliferation, delay extracellular matrix (ECM) degradation, and reduce synovial hyperplasia and inflammation. Targeting ferroptosis is a new direction in the treatment of OA. OA treatment includes intra-articular injections of steroids or hyaluronic acid and artificial joint replacement, but there are limitations. Traditional Chinese medicine (TCM) has been widely used in the treatment of various diseases because of its low cost, low drug resistance, and few side effects. Cell and animal experiments have further confirmed that TCM can intervene in the treatment of OA with ferroptosis from multiple targets, multiple levels, and aspects, but the mechanism of its treatment of OA based on ferroptosis has not been clarified. This paper discussed iron metabolism, lipid peroxidation, cysteine/glutamate transporter system Xc- (system Xc-)/GSH/glutathione peroxidase 4 (GPX4) pathway, nicotinamide adenine dinucleotide phosphate(NADPH)/ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) pathway, tumor protein p53 in OA, and related molecular targets of Chinese medicine monomers and compounds on ferroptosis inhibition. Their potential therapeutic mechanisms were further analyzed to provide theoretical guidance for the treatment of OA by TCM and useful reference for the research and development of related drugs.
3.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
4.Vanillin down-regulates cGAS/STING signaling pathway to improve liver tissue injury in rats with intrahepatic cholestasis
Ning JIANG ; Lan-Xiang PU ; Feng HUANG ; Yan WANG ; Xin PEI ; Jun-Ya SONG ; En-Sheng ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1695-1700
Aim To investigate the effect of vanillin on the regulation of cyclic guanylate adenylate synthetase(cGAS)/stimulator of interferon gene(STING)signa-ling pathway on hepatic tissue injury in rats with intra-hepatic cholestasis(IC).Methods SD rats were randomly divided into normal group,IC group,vanillin group,cGAS overexpression group,and vanillin+cGAS overexpression group,with continuous adminis-tration for seven days.The body weight,liver weight and liver to body weight ratio of rats were measured.Liver function(ALT,AST,ALP,LDH),IC(TBIL,TBA)and liver fibrosis(HA,LN,PC Ⅲ)index were determined by ELISA.Liver pathology and fibrosis were observed using HE and Masson staining,and col-lagen volume fraction was calculated.The expression of cGAS/STING pathway related proteins in liver tissue was detected by Western blot.Results Vanillin could improve liver pathology and fibrosis,increase body weight,and decrease liver weight,ALT,AST,ALP,LDH,TBIL,TBA,HA,LN,PC Ⅲ,collagen volume fraction,cGAS,STING protein in IC rats(P<0.05).Overexpression of cGAS could reverse the effects of vanillin on the above indicators in IC rats(P<0.05).Conclusions Vanillin may improve liver function,IC,liver fibrosis,and liver tissue damage in IC rats by downregulating the cGAS/STING signaling pathway.
5.Establishment and Evaluation Strategy of an in Vitro Cell Model of Bone Marrow Microenvironment Injury in Mouse Acute Graft-Versus-Host Disease
Jia-Yi TIAN ; Pei-Lin LI ; Jie TANG ; Run-Xiang XU ; Bo-Feng YIN ; Fei-Yan WANG ; Xiao-Tong LI ; Hong-Mei NING ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2024;32(2):617-624
Objective:To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease(aGVHD).Methods:Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors,and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients.The recipient mouse received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1× 107/mouse)in 6-8 hours post irradiation to establish a bone marrow transplantation(BMT)mouse model(n=20).In addition,the recipient mice received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1 × 107/mouse)and spleen lymphocytes(2 × 106/mouse)in 6-8 hours post irradiation to establish a mouse aGVHD model(n=20).On the day 7 after modeling,the recipient mice were anesthetized and the blood was harvested post eyeball enucleation.The serum was collected by centrifugation.Mouse MSCs were isolated and cultured with the addition of 2%,5%,and 10%recipient serum from BMT group or aGVHD group respectively.The colony-forming unit-fibroblast(CFU-F)experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC.The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining.In addition,the expression of self-renewal-related genes including Oct-4,Sox-2,and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR).Results:We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD.CFU-F assay showed that,on day 7 after the culture,compared with the BMT group,MSC colony formation ability of aGVHD serum concentrations groups of 2%and 5%was significantly reduced(P<0.05);after the culture,at day 14,compared with the BMT group,MSC colony formation ability in different aGVHD serum concentration was significantly reduced(P<0.05).The immunofluorescence staining showed that,compared with the BMT group,the proportion of MSC surface molecules CD29+and CD 105+cells was significantly dereased in the aGVHD serum concentration group(P<0.05),the most significant difference was at a serum concentration of 10%(P<0.001,P<0.01).The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4,Sox-2,and Nanog was decreased,the most significant difference was observed at an aGVHD serum concentration of 10%(P<0.01,P<0.001,P<0.001).Conclusion:By co-culturing different concentrations of mouse aGVHD serum and mouse MSC,we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability,which providing a new tool for the field of aGVHD bone marrow microenvironment damage.
6.Effect of exercise intensity on body components and CPET indexes of MS patients:A comparison of two prescribed programs
Ruojiang LIU ; Jinmei QIN ; Weizhen XUE ; Zhi LI ; Feng WANG ; Xiang ZHANG ; Hongyu LIU ; Zhiqiang PEI
The Journal of Practical Medicine 2024;40(19):2678-2684
Objective To compare the effects of two exercise intensities on metabolic syndrome(MS).Methods Forty-nine MS patients hospitalized in Taiyuan Central Hospital from December,2022 to January 2024 were selected and randomly divided into two groups:a standard group(n=24)and individual group(n=25).All patients underwent cardiopulmonary exercise test(CPET)before and after treatment,collecting major indexes including body parameter,body component,and metabolic indicator for prescribing exercise programs.The standard group was trained with exercise intensity prescribed on heart rate reserve,while the individual group received the exercise with intensity prescribed on ventilatory threshold.Both groups received equal energy consumption exercise intervention with the same exercise frequency for 12 weeks.Results The two groups demonstrated significant improvements in waist circumference(WC),body mass index(BMI),body fat related indexes,and systolic blood pressure after intervention(P<0.05).The individual group showed significant improvements inWC,BMI and body fat related indexes as compared to the standard group(P<0.05).Both groups showed significant improvements in peak oxygen uptake,(PeakVO2),peak load power(Peak WR),peak metabolic equivalent(PeakMets),and peak respiratory exchange ratio(Peak RER)after intervention(P<0.05).The individual group presented significant improvements in peak heart rate(HRpeak),peak oxygen pulse(Peak VO2/HR),and maximum voluntary ventilation(MVV)(P<0.05)after intervention.Before intervention,the standard group demonstrated significantly higher levels in PeakVO2 and Peak MET compared to the individual group(P<0.05),but after intervention the two groups showed no significant differences in the two indexes.After the intervention,the individual group demonstrated insignificant improvements in all indexes compared to the standard group(P>0.05).Conclusions Both exercise prescriptions based on CPET can effectively improve the health-related indicators of MS patients on condition of moderate exercise intensity.However,the program prescribed based on individualized ventilatory threshold shows superiority to the program prescribed based on maximum physiological value in improving these indicators.
7.Ionizing radiation-induced damage(IRD)to and repair mechanisms of the male reproductive system:Report of testicular function changes in a case of IRD
Neng-Liang DUAN ; Hua-Pei WANG ; Yuan-Shuai RAN ; Zhi-Xiang GAO ; Feng-Mei CUI ; Qiu CHEN ; Yu-Long LIU ; You-You WANG ; Bo-Xin XUE ; Xiao-Long LIU
National Journal of Andrology 2024;30(8):687-695
Objective:To investigate the impact of ionizing radiation(IR)on the structure and function of the testis and pro-vide some strategies for the prevention and treatment of IR-induced damage(IRD).Methods:Using radiation dose simulation,se-men analysis,hormone testing,electron microscopy and single-cell transcriptome sequencing,we assessed and analyzed a case of IRD.We established a mouse model of IRD to validate the results of single-cell sequencing,and investigated the specific biological mecha-nisms of IRD and potential strategies for its intervention.Results:IR at 1-2 Gy significantly reduced sperm concentration and mo-tility,which gradually recovered after 12 months but the percentage of morphologically normal sperm remained low.It also caused im-balanced levels of various steroid hormones,decreased testosterone and dehydroepiandrosterone sulfate,increased progesterone,prolac-tin,luteinizing hormone,and follicle-stimulating hormone.Electron microscopy revealed damages to the testis structure,including loss of germ cells,atrophy of the seminiferous tubules,nuclear membrane depression of the spermatocytes,mitochondrial atrophy and de-formation,and reduction of mitochondrial cristae.Single-cell sequencing indicated significant changes in the function of the Leydig cells and macrophages and disrupted lipid-related metabolic pathways after IRD.Administration of L-carnitine to the mouse model im-proved lipid metabolism disorders and partially alleviated IRD to the germ cells.Conclusion:Ionizing radiation can cause disorders of testicular spermatogenesis and sexual hormones and inhibit lipid metabolism pathways in Leydig cells and macrophages.Improving lipid metabolism can alleviate IRD to germ cells.
8.Chemical constituents from Codonopsis pilosula in Shanxi and their anti-inflammatory activities
Yan-Gang CHENG ; Pei LI ; Si-Qi YANG ; Xiang-Peng KONG ; Hui-Feng LI ; Yan WANG ; Jin-Yan TAN ; Ying-Li WANG
Chinese Traditional Patent Medicine 2024;46(7):2265-2271
AIM To study the chemical constituents from Codonopsis pilosula(Franch.)Nannf in Shanxi and their anti-inflammatory activities.METHODS The 70% ethanol extract from C.pilosula in Shanxi was isolated and purified by silica gel,ODS and preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their in vitro anti-inflammatory activities were evaluated by RAW264.7 model.RESULTS Sixteen compounds were isolated and identified as ethylsyringin(1),7-O-ethyltangshenoside Ⅱ(2),triandrin(3),trans-isoconiferin(4),methylsyringin(5),9-acetoxy syringin(6),cordifolioidyne B(7),codonopiloenynenoside A(8),codonopilodiynoside F(9),pratialin B(10),lobetyolinin(11),lariciresinol-4-O-β-D-glucoside(12),dihydrodehydrodiconiferyl alcohol 4′-O-β-D-glucoside(13),atractylenolid Ⅲ(14),baimantuoluoamide B(15),benzyl primeveroside(16).Compounds 1-2,5,7-11 and 13-15 had certain anti-inflammatory activities,among which compounds 11,14-15 had higher activities,whose IC50 values were(18.23±4.18),(17.73±3.12),(14.89±2.47)μmol/L,respectively.CONCLUSION Compounds 3,6,13,16 are first isolated from Campanulaceae,2,5,15 are first found from this plant.Compounds 11,14 and 15 have good anti-inflammatory activities.
9.Advances on pentraxin 3 in osteoporosis and fracture healing.
Jia-Jun LU ; Yan SUN ; Xuan ZHANG ; Qiao-Qi WANG ; Zhou-Yi XIANG ; Yi-Qing LING ; Pei-Jian TONG ; Tao-Tao XU
China Journal of Orthopaedics and Traumatology 2023;36(4):393-398
Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.
Animals
;
Male
;
Mice
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
Fracture Healing/genetics*
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Osteoporosis/genetics*
;
Phosphatidylinositol 3-Kinases/pharmacology*
10.Association of sleep duration and risk of frailty among the elderly over 80 years old in China: a prospective cohort study.
Wen Fang ZHONG ; Fen LIANG ; Xiao Meng WANG ; Pei Liang CHEN ; Wei Qi SONG ; Ying NAN ; Jia Xuan XIANG ; Zhi Hao LI ; Yue Bin LYU ; Xiao Ming SHI ; Chen MAO
Chinese Journal of Preventive Medicine 2023;57(5):607-613
Objective: To explore the association between sleep duration and the risk of frailty among the elderly over 80 years old in China. Methods: Using the data from five surveys of the China Elderly Health Influencing Factors Follow-up Survey (CLHLS) (2005, 2008-2009, 2011-2012, 2014, and 2017-2018), 7 024 elderly people aged 80 years and above were selected as the study subjects. Questionnaires and physical examinations were used to collect information on sleep time, general demographic characteristics, functional status, physical signs, and illness. The frailty state was evaluated based on a frailty index that included 39 variables. The Cox proportional risk regression model was used to analyze the correlation between sleep time and the risk of frailty occurrence. A restricted cubic spline function was used to analyze the dose-response relationship between sleep time and the risk of frailty occurrence. The likelihood ratio test was used to analyze the interaction between age, gender, sleep quality, cognitive impairment, and sleep duration. Results: The age M (Q1, Q3) of 7 024 subjects was 87 (82, 92) years old, with a total of 3 435 (48.9%) patients experiencing frailty. The results of restricted cubic spline function analysis showed that there was an approximate U-shaped relationship between sleep time and the risk of frailty. When sleep time was 6.5-8.5 hours, the elderly had the lowest risk of frailty; Multivariate Cox proportional risk regression model analysis showed that compared to 6.5-8.5 hours of sleep, long sleep duration (>8.5 hours) increased the risk of frailty by 13% (HR: 1.13; 95%CI: 1.04-1.22). Conclusion: There is a nonlinear association between sleep time and the risk of frailty in the elderly.
Aged
;
Humans
;
Aged, 80 and over
;
Frailty/epidemiology*
;
Sleep Duration
;
Prospective Studies
;
Sleep/physiology*
;
China/epidemiology*

Result Analysis
Print
Save
E-mail