1.Mitochondrial Transfer Promotes Immune Escape in Osteosarcoma Cells: Mechanisms and Research Advances
Qishun QIN ; Xingsheng WANG ; Kai LI ; Pei PENG ; Shihong XU
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1250-1259
Osteosarcoma is a highly aggressive malignant bone tumor whose immuno evasion mechanisms play a pivotal role in tumor progression and therapeutic resistance. Recent studies have identified mitochondrial transfer as a novel mode of intercellular communication that significantly influences metabolic reprogramming and immune evasion in osteosarcoma cells. This mechanism operates through three principal pathways: (1) enhancing energy metabolic efficiency in tumor cells; (2) mitigating intracellular oxidative stress; and (3) modulating immune checkpoint molecule expression. Collectively, these alterations impair host immune surveillance while promoting tumor proliferation, invasion, and distant metastasis through metabolic remodeling, immune tolerance induction, and tumor microenvironment reconstruction. This review systematically elucidates the molecular mechanisms by which mitochondrial transfer regulates immune evasion in osteosarcoma and its dynamic impact on the tumor microenvironment. Furthermore, we discuss the translational potential of targeting this pathway for precision therapy and outline future research directions in this emerging field.
2.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
		                				7.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis 
		                			
		                			Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
		                        		
		                        			
		                        			 Three 2,3-diketoquinoxaline alkaloids were isolated from 
		                        		
		                        	
8.Data Mining of Medication Rules for the Treatment of Atopic Dermatitis the Children by Chinese Medical Master XUAN Guo-Wei
Jin-Dian DONG ; Cheng-Cheng GE ; Yue PEI ; Shu-Qing XIONG ; Jia-Fen LIANG ; Qin LIU ; Xiu-Mei MO ; Hong-Yi LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):752-758
		                        		
		                        			
		                        			Objective Data mining technology was used to mine the medication rules of the prescriptions used in the treatment of pediatric atopic dermatitis by Chinese medical master XUAN Guo-Wei.Methods The medical records of effective cases of pediatric atopic dermatitis treated by Professor XUAN Guo-Wei at outpatient clinic were collected,and then the medical data were statistically analyzed using frequency statistics,association rule analysis and cluster analysis.Results A total of 242 prescriptions were included,involving 101 Chinese medicinals.There were 23 commonly-used herbs,and the 16 high-frequency herbs(frequency>100 times)were Glycyrrhizae Radix et Rhizoma,Saposhnikoviae Radix,Glehniae Radix,Perillae Folium,Ophiopogonis Radix,Cynanchi Paniculati Radix et Rhizoma,Microctis Folium,Dictamni Cortex,Scrophulariae Radix,Coicis Semen,Cicadae Periostracum,Lilii Bulbus,Rehmanniae Radix,Kochiae Fructus,Sclerotium Poriae Pararadicis,and Euryales Semen.The analysis of the medicinal properties showed that most of the herbs were sweet and cold,and mainly had the meridian tropism of the spleen,stomach and liver meridians.The association rule analysis yielded 24 commonly-used drug combinations and 20 association rules.Cluster analysis yielded 2 core drug combinations.Conclusion For the treatment of pediatric atopic dermatitis,Professor XUAN Guo-Wei focuses on the clearing,supplementing and harmonizing therapies,and the medication principle of"supporting the healthy-qi to eliminate the pathogen,and balancing the yin and yang"is applied throughout the treatment.
		                        		
		                        		
		                        		
		                        	
9.Role of Ferroptosis in Osteoarthritis and Traditional Chinese Medicine Intervention: A Review
Xiaojing GUO ; Huan QIN ; Dongliang XIANG ; Yan WANG ; Li ZHANG ; Bo ZHANG ; Shujin WANG ; Xiaotong LI ; Mingyue ZHAO ; Shanhong WU ; Fei PEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):263-272
		                        		
		                        			
		                        			Osteoarthritis (OA) is characterized by articular cartilage degeneration, synovial hyperplasia, hyperosteogeny, and narrowing of joint space, which can be caused by trauma, inflammation, and other factors. With the increasing global population aging, the incidence of OA is rising year by year, making it a major public health problem that urgently needs to be addressed. Exploring effective treatment schemes is particularly important. The pathogenesis of OA is complex, including oxidative stress, autophagy, and apoptosis. Recent studies have found that ferroptosis, a new type of cell death, is also an important pathogenic factor in OA, characterized by a series of complex changes such as iron ion accumulation, glutathione (GSH) depletion, and mitochondrial dysfunction. Research shows that inhibiting ferroptosis in chondrocytes can promote chondrocyte proliferation, delay extracellular matrix (ECM) degradation, and reduce synovial hyperplasia and inflammation. Targeting ferroptosis is a new direction in the treatment of OA. OA treatment includes intra-articular injections of steroids or hyaluronic acid and artificial joint replacement, but there are limitations. Traditional Chinese medicine (TCM) has been widely used in the treatment of various diseases because of its low cost, low drug resistance, and few side effects. Cell and animal experiments have further confirmed that TCM can intervene in the treatment of OA with ferroptosis from multiple targets, multiple levels, and aspects, but the mechanism of its treatment of OA based on ferroptosis has not been clarified. This paper discussed iron metabolism, lipid peroxidation, cysteine/glutamate transporter system Xc- (system Xc-)/GSH/glutathione peroxidase 4 (GPX4) pathway, nicotinamide adenine dinucleotide phosphate(NADPH)/ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) pathway, tumor protein p53 in OA, and related molecular targets of Chinese medicine monomers and compounds on ferroptosis inhibition. Their potential therapeutic mechanisms were further analyzed to provide theoretical guidance for the treatment of OA by TCM and useful reference for the research and development of related drugs. 
		                        		
		                        		
		                        		
		                        	
10.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
		                        		
		                        			
		                        			The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail