1.Contribution of Ambient Air Pollution on Risk Assessment of Type 2 Diabetes Mellitus via Explainable Machine Learning.
Zhong Ao DING ; Li Ying ZHANG ; Rui Ying LI ; Miao Miao NIU ; Bo ZHAO ; Xiao Kang DONG ; Xiao Tian LIU ; Jian HOU ; Zhen Xing MAO ; Chong Jian WANG
Biomedical and Environmental Sciences 2023;36(6):557-560
2.Association between airborne particulate matter(PM 2.5) concentration and the incidence of allergic rhinitis in Shanghai.
Na SUN ; Jingrong GONG ; Yanan HAO ; Zhenfeng SUN ; Yu HUANG ; Yuejin YU ; Wei HUANG ; Lufang TIAN ; Dan LUO ; Wei TANG ; Kai FAN ; Shaoqing YU ; Ruxin ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(6):434-441
		                        		
		                        			
		                        			Objective:To explore the impact of PM 2.5 concentration in Shanghai on the incidence of allergic rhinitis(AR) in the population, and provide strategies for early warning and prevention of AR. Methods:Collect daily average concentrations of atmospheric pollutants monitored in Shanghai from January 1, 2017 to December 31, 2019, and clinical data of AR patients from five hospitals in Shanghai during the same period. We used a time-series analysis additive Poisson regression model to analyze the correlation between PM 2.5 levels and outpatient attendance for AR patients. Results:During the study period, a total of 56 500 AR patients were included, and the daily average concentration of PM 2.5 was(35.28±23.07)μg/m³. There is a correlation between the concentration of PM 2.5 and the number of outpatient attendance for AR cases. There is a positive correlation between the daily average number of outpatient for AR and levels of PM 2.5 air pollution((P<0.05)) . We found that every 10 μg/m³ increase in PM 2.5, the impact of on the number of AR visits was statistically significant on the same day, the first day behind, and the second day behind, with the strongest impact being the exposure on the same day. Every 10 μg/m³ increases in PM 2.5, the number of outpatient visits increased by 0.526% on the same day(95%CI 1.000 50-1.010 04). Conclusion:The atmospheric PM 2.5 concentration in Shanghai is positively correlated with the number of outpatient for AR, and PM 2.5 exposure is an independent factor in the onset of AR. This provides an important theoretical basis for AR.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Particulate Matter/analysis*
		                        			;
		                        		
		                        			Air Pollutants/adverse effects*
		                        			;
		                        		
		                        			Incidence
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Rhinitis, Allergic/etiology*
		                        			
		                        		
		                        	
3.Associations between indoor volatile organic compounds and nocturnal heart rate variability of young female adults: A panel study.
Xue Zhao JI ; Shan LIU ; Wan Zhou WANG ; Ye Tong ZHAO ; Lu Yi LI ; Wen Lou ZHANG ; Guo Feng SHEN ; Fu Rong DENG ; Xin Biao GUO
Journal of Peking University(Health Sciences) 2023;55(3):488-494
		                        		
		                        			OBJECTIVE:
		                        			To investigate the association between short-term exposure to indoor total volatile organic compounds (TVOC) and nocturnal heart rate variability (HRV) among young female adults.
		                        		
		                        			METHODS:
		                        			This panel study recruited 50 young females from one university in Beijing, China from December 2021 to April 2022. All the participants underwent two sequential visits. During each visit, real time indoor TVOC concentration was monitored using an indoor air quality detector. The real time levels of indoor temperature, relative humidity, noise, carbon dioxide and fine particulate matter were monitored using a temperature and humidity meter, a noise meter, a carbon dioxide meter and a particulate counter, respectively. HRV parameters were measured using a 12-lead Holter. Mixed-effects models were used to evaluate the association between the TVOC and HRV parameters and establish the exposure-response relationships, and two-pollutant models were applied to examine the robustness of the results.
		                        		
		                        			RESULTS:
		                        			The mean age of the 50 female subjects was (22.5±2.3) years, and the mean body mass index was (20.4±1.9) kg/m2. During this study, the median (interquartile range) of indoor TVOC concentrations was 0.069 (0.046) mg/m3, the median (interquartile range) of indoor temperature, relative humidity, carbon dioxide concentration, noise level and fine particulate matter concentration were 24.3 (2.7) ℃, 38.5% (15.0%), 0.1% (0.1%), 52.7 (5.8) dB(A) and 10.3 (21.5) μg/m3, respectively. Short-term exposure to indoor TVOC was associated with significant changes in time-domain and frequency-domain HRV parameters, and the exposure metric for most HRV parameters with the most significant changes was 1 h-moving average. Along with a 0.01 mg/m3 increment in 1 h-moving average concentration of indoor TVOC, this study observed decreases of 1.89% (95%CI: -2.28%, -1.50%) in standard deviation of all normal to normal intervals (SDNN), 1.92% (95%CI: -2.32%, -1.51%) in standard deviation of average normal to normal intervals (SDANN), 0.64% (95%CI: -1.13%, -0.14%) in percentage of adjacent NN intervals differing by more than 50 ms (pNN50), 3.52% (95%CI: -4.30%, -2.74%) in total power (TP), 5.01% (95%CI: -6.21%, -3.79%) in very low frequency (VLF) power, and 4.36% (95%CI: -5.16%, -3.55%) in low frequency (LF) power. The exposure-response curves showed that indoor TVOC was negatively correlated with SDNN, SDANN, TP, and VLF when the concentration exceeded 0.1 mg/m3. The two-pollutant models indicated that the results were generally robust after controlling indoor noise and fine particulate matter.
		                        		
		                        			CONCLUSION
		                        			Short-term exposure to indoor TVOC was associated with significant negative changes in nocturnal HRV of young women. This study provides an important scientific basis for relevant prevention and control measures.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Young Adult
		                        			;
		                        		
		                        			Air Pollutants/analysis*
		                        			;
		                        		
		                        			Heart Rate/physiology*
		                        			;
		                        		
		                        			Volatile Organic Compounds/analysis*
		                        			;
		                        		
		                        			Carbon Dioxide
		                        			;
		                        		
		                        			Particulate Matter/adverse effects*
		                        			;
		                        		
		                        			Environmental Pollutants
		                        			
		                        		
		                        	
4.Research progress on the relationship between air pollution and gestational diabetes.
Xiao Ling ZENG ; Qing CHEN ; Heng YANG ; Jia CAO ; Ni Ya ZHOU
Chinese Journal of Preventive Medicine 2023;57(2):159-165
		                        		
		                        			
		                        			Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
		                        		
		                        		
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Diabetes, Gestational/epidemiology*
		                        			;
		                        		
		                        			Air Pollution/analysis*
		                        			;
		                        		
		                        			Air Pollutants/analysis*
		                        			;
		                        		
		                        			Particulate Matter/analysis*
		                        			;
		                        		
		                        			Risk Factors
		                        			;
		                        		
		                        			Maternal Exposure/adverse effects*
		                        			
		                        		
		                        	
5.Ambient fine particulate matter and cardiopulmonary health risks in China.
Tiantian LI ; Yi ZHANG ; Ning JIANG ; Hang DU ; Chen CHEN ; Jiaonan WANG ; Qiutong LI ; Da FENG ; Xiaoming SHI
Chinese Medical Journal 2023;136(3):287-294
		                        		
		                        			
		                        			In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Particulate Matter/analysis*
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Risk Factors
		                        			;
		                        		
		                        			Respiratory Tract Diseases
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Environmental Exposure/adverse effects*
		                        			
		                        		
		                        	
6.Early prenatal exposure to air pollutants and congenital heart disease: a nested case-control study.
Zhao MA ; Weiqin LI ; Jicui YANG ; Yijuan QIAO ; Xue CAO ; Han GE ; Yue WANG ; Hongyan LIU ; Naijun TANG ; Xueli YANG ; Junhong LENG
Environmental Health and Preventive Medicine 2023;28():4-4
		                        		
		                        			BACKGROUND:
		                        			Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease.
		                        		
		                        			METHODS:
		                        			The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease.
		                        		
		                        			RESULTS:
		                        			A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants.
		                        		
		                        			CONCLUSIONS
		                        			This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
		                        		
		                        		
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Air Pollutants/analysis*
		                        			;
		                        		
		                        			Case-Control Studies
		                        			;
		                        		
		                        			Prenatal Exposure Delayed Effects/epidemiology*
		                        			;
		                        		
		                        			Heart Defects, Congenital/etiology*
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Particulate Matter/adverse effects*
		                        			;
		                        		
		                        			Maternal Exposure/adverse effects*
		                        			
		                        		
		                        	
7.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
		                        		
		                        			
		                        			To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Nitrogen Dioxide
		                        			;
		                        		
		                        			Particulate Matter
		                        			;
		                        		
		                        			Respiratory Tract Diseases/epidemiology*
		                        			;
		                        		
		                        			Schools
		                        			;
		                        		
		                        			Students
		                        			;
		                        		
		                        			Child
		                        			
		                        		
		                        	
8.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
		                        		
		                        			
		                        			To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Nitrogen Dioxide
		                        			;
		                        		
		                        			Particulate Matter
		                        			;
		                        		
		                        			Respiratory Tract Diseases/epidemiology*
		                        			;
		                        		
		                        			Schools
		                        			;
		                        		
		                        			Students
		                        			;
		                        		
		                        			Child
		                        			
		                        		
		                        	
9.Lung function and air pollution exposure in adults with asthma in Beijing: a 2-year longitudinal panel study.
Jun WANG ; Wenshuai XU ; Xinlun TIAN ; Yanli YANG ; Shao-Ting WANG ; Kai-Feng XU
Frontiers of Medicine 2022;16(4):574-583
		                        		
		                        			
		                        			The effect of air pollution on the lung function of adults with asthma remains unclear to date. This study followed 112 patients with asthma at 3-month intervals for 2 years. The pollutant exposure of the participants was estimated using the inverse distance weight method. The participants were divided into three groups according to their lung function level at every visit. A linear mixed-effect model was applied to predict the change in lung function with each unit change in pollution concentration. Exposure to carbon monoxide (CO) and particles less than 2.5 micrometers in diameter (PM2.5) was negatively associated with large airway function in participants. In the severe group, exposure to chronic sulfur dioxide (SO2) was negatively associated with post-bronchodilator forced expiratory flow at 50%, between 25% and 75% of vital capacity % predicted (change of 95% CI per unit: -0.34 (-0.55, -0.12), -0.24 (-0.44, -0.03), respectively). In the mild group, the effect of SO2 on the small airways was similar to that in the severe group, and it was negatively associated with large airway function. Exposure to CO and PM2.5 was negatively associated with the large airway function of adults with asthma. The negative effects of SO2 were more evident and widely observed in adults with severe and mild asthma than in adults with moderate asthma. Patients with asthma react differently to air pollutants as evidenced by their lung function levels.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Air Pollutants/analysis*
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Asthma/epidemiology*
		                        			;
		                        		
		                        			Beijing/epidemiology*
		                        			;
		                        		
		                        			Environmental Exposure/adverse effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Particulate Matter/analysis*
		                        			;
		                        		
		                        			Sulfur Dioxide/adverse effects*
		                        			
		                        		
		                        	
10.Disease burden of chronic obstructive pulmonary diseases in China from 1990 to 2019.
Shan Shan HOU ; Jin Dong SHI ; Xin YIN ; Qian XU ; Feng JIANG ; Na WANG ; Qingwu JIANG
Chinese Journal of Epidemiology 2022;43(10):1554-1561
		                        		
		                        			
		                        			Objective: To examine the trend of the burden on chronic obstructive pulmonary diseases (COPD) and epidemiologic transition on related risk factors among the Chinese population from 1990 to 2019. Methods: Based on the data from the Global Burden of Disease 2019 Study, we used the indicator numbers such as disability-adjusted life year (DALY), years of life lost (YLD), years lived with disability (YLL), and prevalence rate to describe the changes of COPD burden stratified by different sex and age groups from 1990 to 2019. We applied population attribution faction (PAF) to analyze the burden attributed to risk factors and epidemiological transition. Results: In 2019, the age-standard rate for DALY, YLD, and YLL and prevalence rate for COPD were 1 102.77/100 000 population,862.37/100 000 population, 240.40/100 000 population, and 2 404.41/100 000. Both age-standardized DALY and YLL rates for COPD in males were higher than in females, except for the YLD rate in females. COPD's top five risk factors were particulate matter pollution, smoking, occupational particulate matter, gases, and fumes, low temperature, and secondhand smoke. Smoking surpassed environmental particulate pollution in 1994 and became the first factor causing the disease burden of COPD. Since then, the order of risk factors has not changed. The PAF of environmental particulate pollutants increased by 1.78% annually, from 15.22% in 1990 to 25.37%, and the PAF of household air pollution from solid fuels decreased by 5.59% annually, from 40.30% in 1990 to 7.59%. Conclusions: From 1990 to 2019, the per person health loss caused by COPD in China showed an overall downward trend. The PAF of relevant risk factors has also changed, the importance of environmental factors is relatively declined, and the status of smoking and other related risk behaviors has become increasingly prominent. The prevention and control of COPD can focus on screening high-risk groups (≥40 years old, smoking, heavy air pollution, having occupational exposure), smoking cessation, and environmental treatment.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Cost of Illness
		                        			;
		                        		
		                        			Pulmonary Disease, Chronic Obstructive/epidemiology*
		                        			;
		                        		
		                        			Air Pollution/adverse effects*
		                        			;
		                        		
		                        			Particulate Matter
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Dust
		                        			;
		                        		
		                        			Gases
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail