1.Acute Restraint Stress Augments 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity via Increased Toxin Uptake into the Brain in C57BL/6 Mice.
Yasuhide MITSUMOTO ; Atsushi MORI
Neuroscience Bulletin 2018;34(5):849-853
As an environmental risk factor, psychological stress may trigger the onset or accelerate the progression of Parkinson's disease (PD). Here, we evaluated the effects of acute restraint stress on striatal dopaminergic terminals and the brain metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which has been widely used for creating a mouse model of PD. Exposure to 2 h of restraint stress immediately after injection of a low dose of MPTP caused a severe loss of striatal dopaminergic terminals as indicated by decreases in the dopamine transporter protein and dopamine levels compared with MPTP administration alone. Both striatal 1-methyl-4-phenylpyridinium ion (MPP) and MPTP concentrations were significantly increased by the application of restraint stress. Striatal monoamine oxidase-B, which catalyzes the oxidation of MPTP to MPP, was not changed by the restraint stress. Our results indicate that the enhanced striatal dopaminergic terminal loss in the stressed mice is associated with an increase in the transport of neurotoxin into the brain.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
metabolism
;
1-Methyl-4-phenylpyridinium
;
metabolism
;
Animals
;
Corpus Striatum
;
drug effects
;
metabolism
;
Disease Models, Animal
;
Dopaminergic Neurons
;
drug effects
;
MPTP Poisoning
;
chemically induced
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Neurotoxins
;
metabolism
;
Restraint, Physical
;
Stress, Psychological
;
metabolism
2.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Adrenergic Agents
;
toxicity
;
Animals
;
Apomorphine
;
pharmacology
;
Disease Models, Animal
;
Dopamine Agonists
;
pharmacology
;
Electroacupuncture
;
methods
;
Functional Laterality
;
drug effects
;
Male
;
Medial Forebrain Bundle
;
injuries
;
Motor Activity
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidopamine
;
toxicity
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Rats
;
Rats, Sprague-Dawley
;
Subthalamic Nucleus
;
drug effects
;
metabolism
;
pathology
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Up-Regulation
;
drug effects
;
physiology
;
Vesicular Glutamate Transport Protein 1
;
metabolism
3.Cognitive Dysfunction in Drug-induced Parkinsonism Caused by Prokinetics and Antiemetics.
Hyun Jung AHN ; Woo Kyoung YOO ; Jaeseol PARK ; Hyeo Il MA ; Yun Joong KIM
Journal of Korean Medical Science 2015;30(9):1328-1333
The use of prokinetics/antiemetics is one of the leading causes of drug-induced parkinsonism (DIP) observed in neurology clinics. Cognitive dysfunction in DIP has recently been recognized, but pathologies related with cognitive dysfunction is unknown. Among our retrospective cohort of 385 consecutive parkinsonian patients enrolled in our parkinsonism registry, 14 patients were identified who satisfied our inclusion criteria: parkinsonism caused by prokinetics/antiemetics, existing T1-weighted 3D volumetric MR images, and normal [18F]-N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane PET scan images. For the comparison of volumetric MR data, 30 age- and sex-matched healthy individuals were included in this study. Among 14 patients with DIP, 4 patients were diagnosed with dementia, and all other patients had mild cognitive impairment (MCI). Comparisons of MR volumetric data between DIP patients with MCI and controls show that cortical gray matter volumes are reduced bilaterally in DIP (P=0.041) without changes in either total white matter volume or total intracranial volume. Among subcortical structures, the volume of the right hippocampus is reduced in DIP patients compared with controls (P=0.011, uncorrected). In DIP, cortical thickness is reduced in the bilateral lingual (P=0.002), right fusiform (P=0.032) and part of the left lateral occipital gyri (P=0.007). Our results suggests that cognitive dysfunction in DIP caused by prokinetics/antiemetics is common. Structural changes in the brain by 3D MRI may be associated with cognitive decline in DIP.
Aged
;
Aged, 80 and over
;
Antiemetics/*adverse effects
;
Brain/drug effects/pathology
;
Cognition Disorders/*chemically induced/*pathology
;
Female
;
Gastrointestinal Agents/*adverse effects
;
Humans
;
Male
;
Parkinson Disease, Secondary/*chemically induced/*pathology
;
Republic of Korea
;
Retrospective Studies
;
Risk Assessment
;
Treatment Outcome
4.Protective effect of alkaloids from Piper longum in rat dopaminergic neuron injury of 6-OHDA-induced Parkinson's disease.
Li ZHENG ; Hao WANG ; Yin-Ying BA ; Hao-Long LIU ; Meng WANG ; Wei-Wei GUO ; Xia WU ; Hui YANG
China Journal of Chinese Materia Medica 2014;39(9):1660-1665
OBJECTIVETo discuss the protective effect of alkaloids from Piper longum (PLA) in rat dopaminergic neuron injury of 6-OHDA-induced Parkinson's disease and its possible mechanism.
METHODThe rat PD model was established by injecting 6-OHDA into the unilateral striatum with a brain solid positioner. The PD rats were divided into the PLA group (50 mg x kg(-1) x d(-1)), the madorpa group (50 mg x kg(-1) x d(-1)) and the model group, with 15 rats in each group. All of the rats were orally given drugs once a day for 6 weeks. Meanwhile, other 15 rats were randomly selected as the sham operation group, and only injected with normal saline in the unilateral striatum. The behavioral changes were observed with the apomorphine (APO)-induced rotation and rotary rod tests. The number of tyrosine hydroxylase (TH)-positive cells in rat substantia nigra and the density of TH-positive fibers in striatum were detected by tyrosine hydroxylase immunohistochemistry. The content of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and nitric oxide synthase (NOS) in rat substantia nigra and striatum were measured by the spectrophotometric method.
RESULTAfter being induced by APO, PD rats showed obvious rotation behaviors, with decreased time stay on rotary rod and significant reduction in the number of TH-positive cells in sustantia nigra and the density of TH-positive fibers in striatum. The activities of SOD, GSH-Px, CAT, the content of GSH and the total antioxidant capacity significantly decreased, whereas the activities of NOS and the content of MDA, NO significantly increased. PLA could significantly improve the behavioral abnormality of PD rats and increase the number of TH-positive cells in sustantia nigra and the density of TH-positive fibers in striatum. It could up-regulate the activities of SOD, GSH-Px, CAT, the content of GSH and the total antioxidant capacity, and decrease the content of NOS and the content of MDA, NO.
CONCLUSIONAlkaloids from P. longum shows the protective effect in substantia nigra cells of 6-OHDA-induced PD model rats. Its mechanism may be related with their antioxidant activity.
Administration, Oral ; Alkaloids ; administration & dosage ; pharmacology ; Animals ; Apomorphine ; pharmacology ; Catalase ; metabolism ; Dopamine Agonists ; pharmacology ; Dopaminergic Neurons ; drug effects ; metabolism ; pathology ; Glutathione ; metabolism ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Motor Activity ; drug effects ; Neostriatum ; drug effects ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase ; metabolism ; Oxidopamine ; Parkinson Disease, Secondary ; chemically induced ; physiopathology ; prevention & control ; Piper ; chemistry ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; drug effects ; metabolism ; Superoxide Dismutase ; metabolism ; Tyrosine 3-Monooxygenase ; metabolism
5.Common Complications after Hypoxic-ischemic Encephalopathy.
Brain & Neurorehabilitation 2014;7(1):10-15
Hypoxic-ischemic encephalopathy (HIE) is one of the major disease for neuro-rehabilitation, as well as one of the important impairment. HIE typically shows global deterioration of brain function with relative preservation of brain stem reflexes, and topographic pattern of damage; the CA1 hippocampal cells, cerebellar Purkinje cells, neocortical neurons in layers 3, 5, 6 and basal ganglia. The characteristics of patho-mechanism including persistent vegetative state, seizure, autonomic dysfunction and secondary Parkinsonism are causative factors of several complications. Management of these complications sometimes curative, but more often re-adaptive and palliative. Understanding and proper rehabilitation of complications will be one of the most important therapeutic strategies for patients with HIE.
Basal Ganglia
;
Brain
;
Brain Stem
;
Humans
;
Hypoxia-Ischemia, Brain*
;
Neurons
;
Parkinson Disease, Secondary
;
Persistent Vegetative State
;
Purkinje Cells
;
Reflex
;
Rehabilitation
;
Seizures
6.Therapeutic effect of a natural squamosamide derivative FLZ on Parkinson's disease model mice induced by LPS plus MPTP.
Ling-Hong YU ; Huai-Ling WEI ; Xiu-Qi BAO ; Dan ZHANG ; Hua SUN
Acta Pharmaceutica Sinica 2013;48(10):1557-1562
The aim of this study is to investigate the protective effect of N-[2-(4-hydroxyphenyl)ethyl]-2-(2, 5-dimethoxyphenyl)-3-(3-methoxy-4-hydroxyphenyl)acrylamide (FLZ), a novel synthetic squamosamide cyclic derivative, against Parkinson's disease (PD) model mice induced by the inflammatory bacterial endotoxin, lipopolysaccharides (LPS) and the neurotoxin 1-methy-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). C57/BL mice were ip injected LPS (5 mg x kg(-1)) once. One week following the LPS injection, mice received a subcutaneous injection of MPTP (25 mg x kg(-1)) once daily for 2 days. Eight weeks later, FLZ (25, 50 and 75 mg x kg(-1)) was orally administered to mice once daily for 60 days. The motor ability of the mice was evaluated by rod climbing test and footprint test. The dopamine (DA) levels in mouse striatum were determined by high performance liquid chromatography system. The tyrosine hydroxylase (TH)-positive cells were showed by immunohistochemical analysis. FLZ treatment significantly improved motor dysfunction of mice challenged by LPS plus MPTP. The increase of TH-positive cell numbers and elevation of DA levels may be contributed to the beneficial effects of FLZ on motor behavior. This study showed FLZ has significant therapeutic effect on LPS plus MPTP induced chronic PD model, which indicates its potential as a new candidate drug to treat PD.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
3,4-Dihydroxyphenylacetic Acid
;
metabolism
;
Acrylamides
;
pharmacology
;
Animals
;
Caffeic Acids
;
pharmacology
;
Corpus Striatum
;
metabolism
;
Dopamine
;
metabolism
;
Homovanillic Acid
;
metabolism
;
Lipopolysaccharides
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Motor Activity
;
drug effects
;
Neurons
;
drug effects
;
metabolism
;
Parkinson Disease, Secondary
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
Random Allocation
;
Tyrosine 3-Monooxygenase
;
metabolism
7.Papillary Meningioma Presenting as Rapidly Progressive Dementia and Parkinsonism.
In Seok PARK ; Seung Hee NA ; Young Do KIM ; In Uk SONG ; Lee So MAENG ; Youngsoon YANG
Dementia and Neurocognitive Disorders 2013;12(3):81-85
There are a variety of different causes of parkinsonism including PD, secondary parkinsonism, and the parkinsonism plus syndromes. Secondary parkinsonism is caused by structural, toxic, metabolic, or infectious mechanisms. Among structural causes, intracranial neoplasms are a rare cause of secondary parkinsonism. Moreover, there are almost never case reports with intracranial space-occupying lesions resulting in parkinsonism associated with rapid cognitive impairment. Therefore, we report herein a 37-year-old woman diagnosed with papillary meningioma who presented with parkinsonism associated with rapidly progressive cognitive impairment mimicking diffuse Lewy body disease.
Adult
;
Brain Neoplasms
;
Dementia
;
Female
;
Humans
;
Lewy Body Disease
;
Meningioma
;
Parkinson Disease, Secondary
;
Parkinsonian Disorders
8.Neurotoxicity and biomarkers of lead exposure: a review.
Kang-sheng LIU ; Jia-hu HAO ; Yu ZENG ; Fan-chun DAI ; Ping-qing GU
Chinese Medical Sciences Journal 2013;28(3):178-188
Appropriate selection and measurement of lead biomarkers of exposure are critically important for health care management purposes, public health decision making, and primary prevention synthesis. Lead is one of the neurotoxicants that seems to be involved in the etiology of psychologies. Biomarkers are generally classified into three groups: biomarkers of exposure, effect, and susceptibility.The main body compartments that store lead are the blood, soft tissues, and bone; the half-life of lead in these tissues is measured in weeks for blood, months for soft tissues, and years for bone. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurological disorders, such as brain damage, mental retardation, behavioral problems, nerve damage, and possibly Alzheimer's disease, Parkinsons disease, and schizophrenia. This paper presents an overview of biomarkers of lead exposure and discusses the neurotoxic effects of lead with regard to children and adults.
Alzheimer Disease
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Animals
;
Behavior
;
drug effects
;
Biomarkers
;
metabolism
;
Brain
;
metabolism
;
pathology
;
physiopathology
;
Brain Diseases
;
chemically induced
;
pathology
;
physiopathology
;
Environmental Exposure
;
adverse effects
;
Humans
;
Lead
;
pharmacokinetics
;
toxicity
;
Lead Poisoning
;
etiology
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Neurotoxicity Syndromes
;
etiology
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Parkinson Disease, Secondary
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Schizophrenia
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
9.Astrocytoma in the Third Ventricle and Hypothalamus Presenting with Parkinsonism.
Kang Ho CHOI ; Seong Min CHOI ; Tai Seung NAM ; Min Cheol LEE
Journal of Korean Neurosurgical Society 2012;51(3):144-146
Parkinsonism secondary to intracranial mass lesions usually results from compression or distortion of the basal ganglia. Secondary parkinsonism due to midbrain infiltration or compression is rare and generally associated with other neurologic signs caused by pyramidal tract and/or cranial nerve involvement. We report a case of 30-year-old woman in whom mild parkinsonism was the major clinical manifestation of an astrocytoma in the anterior third ventricle and hypothalamus. She underwent surgical resection, ventriculoperitoneal shunt and radiation therapy. All symptoms of parkinsonism were completely recovered 3 months after the treatment. Brain tumors can be manifested only by the symptoms of parkinsonism. This case emphasizes the significance of neuroimaging in the evaluation of parkinsonism.
Adult
;
Astrocytoma
;
Basal Ganglia
;
Brain Neoplasms
;
Cranial Nerves
;
Female
;
Humans
;
Hypothalamus
;
Mesencephalon
;
Neuroimaging
;
Neurologic Manifestations
;
Parkinson Disease, Secondary
;
Parkinsonian Disorders
;
Pyramidal Tracts
;
Third Ventricle
;
Ventriculoperitoneal Shunt
10.Effects and mechanism of low frequency stimulation of pedunculopontine nucleus on spontaneous discharges of ventrolateral thalamic nucleus in rats.
Huan LIU ; Yu-Han LIN ; Jiu-Hua CHENG ; Yue CAI ; Jin-Wen YU ; Jin MA ; Dong-Ming GAO
Acta Physiologica Sinica 2011;63(4):311-318
Parkinson's disease is a progressive neurodegenerative disorder characterized clinically by rigidity, akinesia, resting tremor and postural instability. It has recently been suggested that low frequency stimulation of the pedunculopontine nucleus (PPN) has a role in the therapy for Parkinsonism, particularly in gait disorder and postural instability. However, there is limited information about the mechanism of low frequency stimulation of the PPN on Parkinson's disease. The present study was to investigate the effect and mechanism of low frequency stimulation of the PPN on the firing rate of the ventrolateral thalamic nucleus (VL) in a rat model with unilateral 6-hydroxydopamine lesioning of the substantia nigra pars compacta. In vivo extracellular recording and microiontophoresis were adopted. The results showed that the firing rate of 60.71% VL neurons in normal rats and 59.57% VL neurons in 6-hydroxydopamine lesioned rats increased with low frequency stimulation of the PPN. Using microiontophoresis to VL neurons, we found the firing rate in VL neurons responded with either an increase or decrease in application of acetylcholine (ACh) in normal rats, whereas with a predominant decrease in M receptor antagonist atropine. Furthermore, the VL neurons were mainly inhibited by application of γ-aminobutyric acid (GABA) and excited by GABA(A) receptor antagonist bicuculline. Importantly, the VL neurons responding to ACh were also inhibited by application of GABA. We also found that the excitatory response of the VL neurons to the low frequency stimulation of the PPN was significantly reversed by microiontophoresis of atropine. These results demonstrate that cholinergic and GABAergic afferent nerve fibers may converge on the same VL neurons and they are involved in the effects of low frequency stimulation of the PPN, with ACh combining M(2) receptors on the presynaptic membrane of GABAergic afferents, which will inhibit the release of GABA in the VL and then improve the symptoms of Parkinson's disease.
Acetylcholine
;
metabolism
;
Action Potentials
;
Animals
;
Cholinergic Fibers
;
physiology
;
Electric Stimulation
;
Male
;
Oxidopamine
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Pedunculopontine Tegmental Nucleus
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Ventral Thalamic Nuclei
;
physiology

Result Analysis
Print
Save
E-mail