1.Effects on extravascular lung water of lung protective ventilation strategy applied on piglets with acute respiratory distress syndrome induced by paraquat.
Jin Zhu WANG ; Chun Lei ZHENG ; Hui ZHENG ; Xiao Gang LIU ; Chao LAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(1):7-11
Objective: To study the effects on extravascular lung water of lung protective ventilation strategy applying on piglets with acute respiratory distress syndrome (ARDS) induced by paraquat (PQ) under pulse indicating continuous cardiac output (PiCCO) monitoring. Methods: The piglets models with ARDS induced by PQ were established in June 2020 and all of them were received mechanical ventilation and divided into three groups according to tidal volume (V(T)) : small V(T) group (6 ml/kg) , middle V(T) group (10 ml/kg) and large V(T) group (15 ml/kg) , there were 5 piglets in each group. The positive end expiratory pressure (PEEP) were all setup on 10 cmH(2)O. The indexes such as arterial blood gas analysis, oxygenation index (OI) , extravascular lung water index (ELWI) and pulmonary vascular permeability index (PVPI) were monitored at time of before the model was established (baseline) , time of the model was established (t(0)) and 2 h (t(2)) , 4 h (t(4)) , 6 h (t(6)) after mechanical ventilation. Lung tissue were punctured at time of baseline, t(0) and t(6) to be stained by Hematoxylin-eosin (HE) staining and pulmonary pathology were observed under light microscopy. Results: The heart rate (HR) , mean arterial pressure (MAP) and partial pressure of carbon dioxide (PaCO(2)) of all groups were higher than the base value while the pH values, partial pressure of oxygen (PaO(2)) and OI were lower than the base value when the models were established (P<0.05) . After mechanical ventilation, the HR and MAP values of all groups at t(2), t(4) and t(6) were lower than t(0) while the PaCO(2) of t(4) and t(6) were all higher than t(0), the differences were statistically significant (P<0.05) . The PaO(2) and OI of all groups showed a trend of rising at first and then decreasing after mechanical ventilation. The MAP, PaO(2), PaCO(2) and OI of the middle V(T) group and large V(T) group were apparently lower than that of the small V(T) group at t(2), t(4) and t(6) (P<0.05) . The ELWI and PVPI at t(0) of all groups were higher than that of baseline (P<0.05) . The ELWI of the small V(T) group at t(6) were lower than t(0) of the same group and t(6) of the middle V(T) group and large V(T) group (P<0.05) . HE staining showed congestion and edema of alveolar tissue, swelling of capillaries, exudation of red blood cells and widening of alveolar septum in piglets after successful modeling. And further widening of alveolar septum and rupture of alveolar septum could be seen in the lung tissues of each group at t(6), and the injury was the slightest in the small V(T) group. Conclusion: The lung protective ventilation strategy can alleviate the extravascular lung water and ARDS induced by PQ and improve oxygenation.
Animals
;
Extravascular Lung Water
;
Lung/physiology*
;
Paraquat/toxicity*
;
Respiration, Artificial/adverse effects*
;
Respiratory Distress Syndrome/chemically induced*
;
Swine
2.Preliminary study on time-dependent changes of intestinal tract and brain-gut axis in mice model of Parkinson's disease induced by paraquat.
Kai Dong WANG ; Bing Yang ZHANG ; Bao Fu ZHANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):161-169
Objective: To observe the intestinal time-dependent changes in Parkinson's disease (PD) mouse model constructed by intraperitoneal injection of paraquat (PQ) and to establish the brain-gut axis connection initially. Methods: In October 2019, 48 mice were randomly divided into treated group and control groups: treated 4-week (P-4) group, treated 6-week (P-6) group, treated 8-week (P-8) group, control 4-week (C-4) group, control 6-week (C-6) group, and control 8-week (C-8) group. The treated group was injected with 15 mg/kg PQ solution and the control group was injected with 0.9% saline (0.2 ml/20 g) by intraperitoneal injection twice a week. After the initial state (0 weeks) and the treatment at the end of 4, 6 and 8 weeks, the mood changes and motor functions of mice were assessed by neurobehavioral tests (open field test, pole climbing test, tail suspension test and elevated plus maze test) . And the number of fecal pellets for 1 h and water content were calculated to assess the functional status of the gastrointestinal tract. Western blotting experiments were performed to detect the expression levels of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in the nigrostriatal region of the mouse brain, the tight junction markers zonula occludens-1 (ZO-1) and Occludin, the inflammatory markers of integrin αM subunit (CD11b) , inducible nitric oxide synthase (iNOS) , high mobility group box 1 (HMGB1) , interleukin-1β (IL-1β) , and the neuronal markers βⅢ-tubulin and α-syn protein in the colon.Immunohistochemical staining was performed to detect the expression levels of colonic tight junction proteins ZO-1 and Occludin. Immunofluorescence staining was performed to detect the expression levels of TH in the substantia nigra region of the midbrain, and the co-localization of colonic intestine neuronal marker (βⅢ-tubulin) and Ser129 α-syn in the colonic. Results: Compared with the initial state (0 weeks) and C-8 group, mice in the P-8 group had significantly higher pole climbing test scores and resting time, and significantly lower total active distance, mean active speed, percentage of open arm entry and 1 h fecal instances (P<0.05) . After poisoning, the 1 h fecal water content of model mice first increased and then decreased, the P-4 and P-6 groups were significantly higher than the simultaneous point control group, and the P-8 groups were significantly lower than the initial state (P<0.05) . Compared with control, P-4 and P-6 groups, the expression levels of ZO-1 and Occludin in the P-8 group were significantly decreased (P<0.05) . Compared with control group, the expression levels of CD11b and IL-1β in the P-4 group were significantly increased (P<0.05) . Compared with control and P-4 group, the expression levels of CD11b, iNOS, HMGB1 and IL-1β in the P-6 and P-8 groups were significantly increased (P<0.05) . Compared with the control and P-4 groups, the expression levels of βⅢ-tubulin in the colon of mice in the P-8 group were significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased (P<0.05) . The expression level of Ser129 α-syn in the colon of model mice was negatively correlated with the expression level of βⅢ-tubulin (r(s)=-0.9149, 95%CI: -0.9771--0.7085, P<0.001) . Ser129 α-syn and βⅢ-tubulin co-localization in the colonic intermuscular plexus region increased gradually with the time of exposure. Compared with the control, P-4 and P-6 groups, the expression level of TH in the nigrostriatal region of the brain was significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased in the P-8 group (P<0.05) . Correlation analysis showed that the relative expression level of Ser129 α-syn in the nigrostriatal region of the brain was negatively correlated with the expression level of TH in the model mice (r(s)=-0.9716, 95% CI: -0.9925--0.8953, P<0.001) . Conclusion: The PD mouse model is successfully established by PQ, and the intestinal function of the model mice is reduced in a time-dependent manner. And on this basis, it is preliminary determined that the abnormal aggregation of α-syn may be an important substance connecting the brain-gut axis.
Animals
;
Brain-Gut Axis
;
Disease Models, Animal
;
HMGB1 Protein
;
Intestines
;
Mice
;
Mice, Inbred C57BL
;
Occludin
;
Paraquat/toxicity*
;
Parkinson Disease
;
Tubulin
;
Tyrosine 3-Monooxygenase/metabolism*
;
Water
3.Dynamic changes of locus coeruleus damage in Parkinson's disease-like mice induced by paraquat.
Bing Yang ZHANG ; Kai Dong WANG ; Bao Fu ZHANG ; Tian TIAN ; Yi Fan WANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):260-266
Objective: To observe the dynamic changes of brainstem locus coeruleus (LC) damage in Parkinson' s disease (PD) -like mice by paraquat (PQ) . Methods: In October 2019, 36 male C57BL/6 mice were randomly divided into the exposure group and the control group, with 18 mice in each group. The mice in the exposure group were given intraperitoneal injection of 15 mg/kg PQ, and the mice in the control group were given intraperitoneal injection of 0.9% saline, twice a week for 8 weeks. Neurobehavioral changes (pole climbing test, swimming test, open field test, tail hanging test, high plus maze test and water maze test) were observed at 4 weeks, 6 weeks and 8 weeks, respectively, and the changes of motor ability, emotion and cognitive function were evaluated. The brain tissue of mice were taken and stained with Hematoxylin-Eosin (HE) to observe the pathological changes of LC. Nissl staining was used to detect the changes of neuronal Nissl bodies in LC. Immunohistochemistry (IHC) staining was used to detect the expression of neuron nuclear antigen (NeuN) , dopamine (DA) neurons and norepinephrine (NE) neuron markers tyrosine hydroxylase (TH) , α-synuclein (α-syn) in substantia nigra (SN) and LC. The expression levels of NeuN, TH and α-syn in the midbrain and brainstem were detected by Western blotting. TUNEL staining was used to detect neuronal apoptosis in LC. Results: Compared with the 4th week of PQ exposure group, the time of pole climbing and swimming immobility were gradually increased, the ratio of open arm residence time of high plus maze test and the number of times of the platform and the residence time of platform quadrant in water maze test were gradually decreased (P<0.05) in the exposure group with the progress of exposure time. The results of HE and Nissl staining showed that the neurons in LC gradually arranged loosely, the nucleus were deeply stained, the cytoplasm was pyknosis, and the number of Nissl bodies gradually decreased (P<0.05) in the exposure group with the progress of exposure time. IHC results showed that the number of NeuN and TH positive cells in SN and LC of mice were gradually decreased, and the positive expression of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. Western blotting results showed that the expression levels of NeuN and TH in the midbrain and brainstem were gradually decreased, and the expression level of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. TUNEL staining showed that the apoptosis rates of neurons in LC were gradually increased (P<0.05) in the exposure group with the progress of exposure time. Conclusion: PQ induces progressive damage in the LC area of PD-like mice, which may be caused by the abnormal accumulation of pathological α-syn in the LC area.
Animals
;
Dopaminergic Neurons
;
Locus Coeruleus/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Paraquat/toxicity*
;
Parkinson Disease/metabolism*
;
Substantia Nigra
;
Tyrosine 3-Monooxygenase/metabolism*
4.Study on the Protective effect and mechanism of Nicotinamide Riboside on lung injury in paraquat intoxicated mice.
Xing Ken FAN ; Chang Qin XU ; Kai Qiang CAO ; Guang Ju ZHAO ; Guang Liang HONG ; Zhong Qiu LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):561-567
Objective: To investigate the protective effect and mechanism of Nicotinamide Riboside (NR) on lung injury caused by Paraquat intoxicated mice. Methods: Eighty clean male BALB/C mice were selected and averagely divided forty mice into 4 groups with 10 mice in each group, PQ group was given 25% PQ solution (60 mg/kg) by one-time gavage. PQ+NR group were intraperitoneally injected with NR solution (300 mg/kg) 1 hour before given the same amount of PQ solution (60 mg/kg) by one-time gavage, The Control group were given the same amount of saline by one-time gavage, The same amount of NR was intraperitoneally injected before NR group were given saline by one-time gavage. Observed and recorded general condition of PQ intoxicated mice. Observed and recorded the death of mice every half an hour and counted the mortality and drew survival curve of each group after 72 hours exposure. another forty mice were averagely divided and treated by the same way. After 24 hours of modelling, mice were anaesthetized and killed. Then blood was extracted after eyeball was removed. The changes of TNF-a、IL-6 and MPO in serum of mice were detected by ELISA.Two lung tissues were removed from the chest and used to measure the D/W ratio of the lung. The pathological changes of lung were observed and scored under light microscope.The levels of SOD, MDA and Caspase-3 in lung tissues were determined by chemical colorimetry. The expression of Sirt1 and Nrf2 in lung tissues was detected by Western-blot. Results: Compared with the Control group and the NR group, the mice in the PQ group had a poor general condition, such as depression, crouching, skin disorder and reduced activity, food, urine and feces. The symptoms in the PQ+NR group were reduced compared with the PQ group. The survival rate at 72 hours after exposure: 80% in the PQ+NR group and 40% higher than that in the PQ group (P=0.029) . Compared with Control group and NR group, the D/W ratio (0.09±0.07) , lung pathology score under light microscope (11.80±0.37) , TNF-a (39.89±1.48) pg/ml、IL-6 (77.29±2.38) pg/ml、MPO (0.31±0.01) μg/ml、SOD (6.62±0.30) U/mgprot、MDA level (1.21±0.14) mmol/mgprot, Caspase-3 activity (356.00± 27.16) %, Sirt1 and Nrf2 protein expression (1.02±0.14、0.82±0.06) were significantly decreased in PQ group (P=0.004、0.023) ; Compared with PQ group, PQ+NR group significantly increased the D/W ratio (0.10±0.10) , decreased the pulmonary pathology score under light microscope (7.400.51) , decreased TNF-a (33.00± 0.65) pg/ml、IL-6 (52.23±4.23) pg/ml、MPO leve (0.23±0.01) μg/mll, increased SOD leve (9.28±0.45) U/mgprotl, decreased MDA level (0.78±0.02) mmol/mgprot, decreased Caspase-3 activity (222.80±7.59) %, and increased the protein expressions of Sirt1 and Nrf2 (1.62±0.16、1.06±0.04) (P=0.048、0.035) . Conclusion: NR can prolong the survival time of PQ poisoned mice; NR intervention can effectively inhibit the inflammatory response, peroxidation injury and apoptosis of PQ poisoned mice; NR intervention can upregulate the expression of Sirt1 and Nrf2 protein and effectively reduce the lung injury of PQ poisoning.
Animals
;
Caspase 3/metabolism*
;
Interleukin-6/metabolism*
;
Lung
;
Lung Injury/metabolism*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
NF-E2-Related Factor 2/metabolism*
;
Niacinamide/pharmacology*
;
Paraquat/toxicity*
;
Pyridinium Compounds/pharmacology*
;
Sirtuin 1/metabolism*
;
Superoxide Dismutase/metabolism*
5.Dose-effect relationship between vitamin C and paraquat poisoning rats.
Baoling WEN ; Lei YU ; Yan FANG ; Xiaolong WANG
Journal of Central South University(Medical Sciences) 2016;41(12):1323-1327
To explore the dose-effect relationship between vitamin C and paraquat (PQ) poisoning rats.
Methods: A total of 40 Sprague-Dawley (SD) rats were randomly divided into 4 groups: a control group, a PQ poisoning group, a vitamin C group 1 and a vitamin C group 2 (n=10 in each group). 150 mg/kg PQ was perfused into rat stomach to establish PQ poisoning rat model. In PQ poisoning group, 30 mg/kg methylprednisolone and 2.5 mg/kg cyclophosphamide were injected peritoneally on the basis of PQ poisoning rat model. In vitamin C1 and C2 group, vitamin C was injected at a dosage of 5 or 500 mg/kg, respectively. The control group only received normal saline (NS). The malondialdehyde (MDA), liver and kidney function as well as arterial blood gas in the blood were examined 36 h later. At the end, the rats were killed and took the liver tissues for pathological examination and weight ratio calculation. The glutathione peroxidase (GSH-PX), ctychrome C (Cyt C) in the liver tissues were detected by chromatometry, and the Bcl-2 was detected by Western blot.
Results: Compared with the PQ poisoning group, the MDA and Cyt C were decreased, the GSH-PX was increased, and liver and kidney functions were improved in the vitamin C group 1 (all P<0.01); but in the vitamin C group 2, the MDA increased and liver/kidney functions were impaired (all P<0.01). The expression of Bcl-2 in the PQ poisoning group was lower than that in the control group; compared with the PQ poisoning group, it was increased in the vitamin C1 group, while it was decreased in the vitamin C group 2 (both P<0.01). There was no obvious difference in the lung function, wet/dry weight ratio and pathological changes between the poisoning group and experimental groups (all P>0.05).
Conclusion: Vitamin C at the low dose shows a certain degree of protection for the liver and kidney in the PQ poisoning rats model through it antioxidative activity and anit-apoptosis activity, while vitamin C at the high does may promote oxidation. Meanwhile, vitamin C doesn't show protective effect on lung in the PQ poisoning rats.
Animals
;
Apoptosis
;
drug effects
;
Ascorbic Acid
;
administration & dosage
;
pharmacology
;
Cytochromes c
;
drug effects
;
metabolism
;
Dose-Response Relationship, Drug
;
Glutathione Peroxidase
;
drug effects
;
Kidney
;
drug effects
;
pathology
;
physiopathology
;
Lung
;
drug effects
;
pathology
;
physiopathology
;
Malondialdehyde
;
metabolism
;
Paraquat
;
toxicity
;
Protective Agents
;
pharmacology
;
Proto-Oncogene Proteins c-bcl-2
;
drug effects
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Vitamins
6.Antagonistic effect of curcumin on lipid peroxidation of rats poisoned by paraquat.
Hongjun LI ; Yongzhi CAO ; Baonan LIU ; Lingji FENG ; Peng LI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(8):609-611
OBJECTIVETo explore the pathogenesis of paraquat poisoning and observe the change in lipid peroxidation of rats treated with different doses of curcumin.
METHODSA total of 50 8-week-old male Wistar rats (clean grade) were randomly divided into high-dose curcumin plus conventional treatment group, low-dose curcumin plus conventional treatment group, high-dose curcumin treatment group, poisoned group, and blank control group. Glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels in rat serum were measured at 1, 3, 7, 14, and 21 d post paraquat injection.
RESULTSCompared with the blank control group, other groups had significantly higher MDA levels but lower SOD, GSH-PX, and CAT activities. The high-dose, low-dose curcumin plus conventional treatment, and high-dose curcumin treatment groups had significantly lower serum lipid peroxidation levels compared with the poisoned group and among them the high-dose curcumin plus conventional treatment group had the most significant improvement.
CONCLUSIONCurcumin can significantly decrease serum lipid peroxidation level in rats and inhibit and delay the occurrence and progression of the damage to the body.
Animals ; Catalase ; blood ; Curcumin ; pharmacology ; Glutathione Peroxidase ; blood ; Lipid Peroxidation ; drug effects ; Male ; Malondialdehyde ; blood ; Paraquat ; toxicity ; Random Allocation ; Rats ; Rats, Wistar ; Superoxide Dismutase ; blood
8.The protective effect of ulinastatin on paraquat-induced injury in HK-2 cells and the underlying mechanisms.
Xingrong SHE ; Guangliang HONG ; Jiaping TAN ; Guangju ZHAO ; Mengfang LI ; Zhongqiu LU ; E-mial: LZQ640815@163.COM.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):501-506
OBJECTIVETo investigate the protective effect of ulinastatin (UTI) on HK-2 cells during paraquat (PQ)-induced injury and its underlying mechanisms.
METHODSRoutinely cultured HK-2 cells were divided into blank control group, PQ group, UTI+PQ group and UTI group. Cell viability was determined by CCK-8 assay. The concentration of PQ in HK-2 cells were measured by high performance liquid chromatography (HPLC). The production of total reactive oxygen species (ROS) were detected by fluorescence microscopy. The activities of superoxide dismutase activity (SOD) and the content of malondialdehyde (MDA) in HK-2 cells were observed by chemical colorimetry. The levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTSPQ, even at a dose of 200 µM, could significant suppress the viability of HK-2 cells in a dose-dependent and time-dependent. UTI showed no significant inhibitory effect on the viability of HK-2 cells when given at a dose below 8 000 U/ml (P > 0.05). Compared with the PQ group, the UTI+PQ group had significantly increased the viability of HK-2 cells in a dose-dependent of UTI (P < 0.05). Compared with the PQ group on the same hour, the UTI+PQ group showed decreased in PQ concentration in HK-2 cells (P < 0.05 for all except 6 h). Compared with the blank control group, the PQ group had significantly decreased SOD activity and significantly increased ROS level and MDA content (P < 0.05). Compared with the PQ group, the UTI+PQ group had significantly increased SOD activity and significantly decreased ROS level and MDA content (P < 0.05). Compared with the blank control group, the PQ group had significantly increased IL-6 and TNF-α level (P < 0.05); Compared with the PQ group, the UTI+PQ group had significantly decreased IL-6 and TNF-α level (P < 0.05).
CONCLUSIONUTI significantly reduces the PQ-induced oxidative damage and inflammatory injury and its mechanism may be by reducing the accumulation of PQ in HK-2 cells.
Cell Line ; Cell Survival ; drug effects ; Glycoproteins ; pharmacology ; Humans ; Interleukin-6 ; metabolism ; Malondialdehyde ; metabolism ; Oxidative Stress ; Paraquat ; toxicity ; Reactive Oxygen Species ; metabolism ; Superoxide Dismutase ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
9.Effect of hydrogen-saline on lung injury and heme oxygenase-1 expression in the lung tissue of acute paraquat-intoxicated mice.
Gang LIU ; Dongmei SONG ; Yu JIANG ; Yun GE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(5):337-341
OBJECTIVETo investigate the effect of Hydrogen-saline on Lung Injury and HO-1 Expression in The Lung Tissue of Acute Paraquat-intoxicated mice.
METHODS108 male clean-grade mice were divided randomly into 3 groups: normal control group (n = 8), PQ group (n = 50) and PQ HN group (n = 50), PQ group were lavaged with 20% PQ (50 mg/kg). PQ+Hyclrogen saline group were intxaperitoneal injected with 5 ml/kg saturated hydragen saline after lavaged, 2 times/d. We observe its performance after the poisoning, The lung tissue were taken to HE stained, MDA and SOD activity of lung tissue homogenate were detected, HO-1 activity were observed by immunohistochemistry and western method at 6 h, 1 d, 3 d, 7 d and 14 d.
RESULTSmice came to shortness of breath, exhaustion and death after poisoned. PQ+hydrogen saline group was more alleviative than PQ group. The lung MDA of PQ group was markedly increased at 6 h and 24 h and SOD was decreased at 6 h, 24 h, 3 d, 7 d, 14 d than normal control group. In Comparison with PQ group, the lung MDA was decreased at 24 h and SOD was increased at 24 h and 3 d (P < 0.05). HO-1 expression trend and distribution in PQ+hydrogen saline group are similar with PQ group, but were significantly higher than that of PQ group and the control group each time point (P < 0.05).
CONCLUSIONOxidative stress plays important roles in lung injury caused by paraquat. Hydrogen-saline may increase expression of HO-1 and alleviate oxidative stress damage in lung.
Acute Lung Injury ; metabolism ; pathology ; Animals ; Heme Oxygenase-1 ; metabolism ; Hydrogen ; Lung ; drug effects ; metabolism ; pathology ; Male ; Malondialdehyde ; metabolism ; Membrane Proteins ; metabolism ; Mice ; Oxidative Stress ; Paraquat ; toxicity ; Saline Solution, Hypertonic ; therapeutic use ; Superoxide Dismutase ; metabolism
10.Effect of reactive oxygen species induced by paraquat on neutrophil apoptosis.
Kai-xiu QIN ; Chun-wen LI ; Yan FANG ; Lei YU ; Xiao-long WANG
Chinese Journal of Applied Physiology 2015;31(2):111-114
OBJECTIVETo investigate the effect of paraquat (PQ) on reactive oxygen species (ROS) and neutrophil apoptosis and its possible signal transduction pathways.
METHODSCultured neutrophils were treated with different concentrations of PQ for 6-24 h. The apoptosis rate of neutrophils and ROS content were determined by flow cytometry. The exoressions of nuclear factor kappa B (NF-κB) and Caspase 3 were detected by Western blot. These parameters were checked again after NF-κB and Caspase 3 antagonist were applied.
RESULTSPQ could boost ROS generation and depress neutrophil apoptosis significantly. At the same time PQ could enhance the expression of NF-κB and inhibit the expression of Caspase 3. These effects could be reversed by ROS inhibitor diphenyleneiodonium (DPI) and NF-κB inhibitor pyrrolidinedithiocarbamate (PDTC).
CONCLUSIONPQ is a potent inducer of ROS and can inhibit neutrophil apoptosis by activating NF-κB and surpressing Caspase 3 activity.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cells, Cultured ; NF-kappa B ; antagonists & inhibitors ; metabolism ; Neutrophils ; cytology ; drug effects ; Paraquat ; toxicity ; Pyrrolidines ; pharmacology ; Reactive Oxygen Species ; metabolism ; Signal Transduction ; Thiocarbamates ; pharmacology

Result Analysis
Print
Save
E-mail