1.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
Animals
;
Male
;
Rats
;
Caspase 3/metabolism*
;
Collagen
;
Disease Models, Animal
;
Hypertension, Pulmonary/drug therapy*
;
Monocrotaline/adverse effects*
;
Panax notoginseng/chemistry*
;
Proliferating Cell Nuclear Antigen/pharmacology*
;
Pulmonary Arterial Hypertension
;
Pulmonary Artery/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Notch3/genetics*
;
RNA, Messenger
;
Saline Solution
;
Signal Transduction
;
Saponins/pharmacology*
2.Targeted trace ingredients coupled with chemometric analysis for consistency evaluation of Panax notoginseng saponins injectable formulations.
Jingxian ZHANG ; Zijia ZHANG ; Zhaojun WANG ; Tengqian ZHANG ; Yang ZHOU ; Ming CHEN ; Zhanwen HUANG ; Qingqing HE ; Huali LONG ; Jinjun HOU ; Wanying WU ; Dean GUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):631-640
Evaluating the consistency of herb injectable formulations could improve their product quality and clinical safety, particularly concerning the composition and content levels of trace ingredients. Panax notoginseng Saponins Injection (PNSI), widely used in China for treating acute cardiovascular diseases, contains low-abundance (10%-25%) and trace saponins in addition to its five main constituents (notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, and ginsenoside Rd). This study aimed to establish a robust analytical method and assess the variability in trace saponin levels within PNSI from different vendors and formulation types. To achieve this, a liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) method employing multiple ions monitoring (MIM) was developed. A "post-column valve switching" strategy was implemented to eliminate highly abundant peaks (NR1, Rg1, and Re) at 26 min. A total of 51 saponins in PNSI were quantified or relatively quantified using 18 saponin standards, with digoxin as the internal standard. This study evaluated 119 batches of PNSI from seven vendors, revealing significant variability in trace saponin levels among different vendors and formulation types. These findings highlight the importance of consistent content in low-abundance and trace saponins to ensure product control and clinical safety. Standardization of these ingredients is crucial for maintaining the quality and effectiveness of PNSI in treating acute cardiovascular diseases.
Ginsenosides
;
Saponins
;
Chemometrics
;
Panax notoginseng
;
Cardiovascular Diseases
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
3.Effects of propiconazole on physiological and biochemical properties of Panax notoginseng and dietary risk assessment.
Zi-Xiu ZHENG ; Li-Sha QIU ; Kai ZHENG ; Lan-Ping GUO ; Xiu-Ming CUI ; Hong-Juan NIAN ; Ying-Cai LI ; Shao-Jun HUANG ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(5):1203-1211
To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.
Panax notoginseng/chemistry*
;
Panax
;
Antioxidants/pharmacology*
;
Saponins/pharmacology*
;
Glutathione
;
Risk Assessment
4.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
5.Research summary of chemical constituents and pharmacological effects of Panax notoginseng and predictive analysis on its Q-markers.
Li-Ping SHI ; Guo-Zhuang ZHANG ; Cong-Sheng LIU ; Zhi-Xin HUANG ; Yu-Qing ZHENG ; Lin-Lin DONG
China Journal of Chinese Materia Medica 2023;48(8):2059-2067
Panax notoginseng contains triterpene saponins, flavonoids, amino acids, polysaccharides, volatile oil and other active components, which have the effects of promoting blood circulation, stopping bleeding, removing blood stasis, etc. This study summarized the herbal research, chemical constituents and main pharmacological activities of P. notoginseng, and based on the theory of Q-markers of traditional Chinese medicine, predicted and analyzed the Q-markers of P. notoginseng from the aspects of plant kinship, efficacy, drug properties, measurability of chemical components, etc. It was found that ginsenosides Rg_1, Re, and Rb_1 with specific content ratio, ginsenosides Rb_2, Rb_3, Rc, Rd, Rh_2, and Rg_3, notoginseng R_1, dencichine and quercetin could be used as potential Q-markers of P. notoginseng, which facilitated the formulation of quality standards reflecting the efficacy of P. notoginseng.
Panax notoginseng/chemistry*
;
Ginsenosides/analysis*
;
Saponins/analysis*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Panax/chemistry*
6.Acute Developmental Toxicity of Panax notoginseng in Zebrafish Larvae.
Rong-Rong WANG ; Ting LI ; Lei ZHANG ; Zheng-Yan HU ; Li ZHOU ; Le-Tian SHAN ; Jia-Wei HUANG ; Lan LI
Chinese journal of integrative medicine 2023;29(4):333-340
OBJECTIVE:
To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay.
METHODS:
Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb.
RESULTS:
The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN.
CONCLUSION
This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.
Animals
;
Zebrafish/genetics*
;
Saponins/pharmacology*
;
Panax notoginseng/chemistry*
;
Larva
;
Sequence Analysis, RNA
7.Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H22 cell xenograft.
Qiong ZOU ; Xiao Ping WU ; Jin Ji WANG ; Die XIA ; Meng Yue DENG ; Yu Zhen DING ; Yu Ling DAI ; Song Yue ZHAO ; Tong CHEN
Journal of Southern Medical University 2022;42(4):538-545
OBJECTIVE:
To investigate the therapeutic effects of total saponins from Panax notognseng (PNS) combined with cyclophosphamide (CTX) in mice bearing hepatocellular carcinoma H22 cell xenograft.
METHODS:
We examined the effects of treatment with different concentrations of PNS on H22 cell proliferation for 24 to 72 h in vitro using CCK8 colorimetric assay. Annexin V/PI double fluorescence staining was used to detect the effect of PNS on apoptosis of H22 cells. Mouse models bearing H22 cell xenograft were established and treated with CTX (25 mg/kg), PNS (120, 240 or 480 mg/kg), alone or in combinations. After treatments for consecutive 10 days, the mice were euthanized for examinations of carbon clearance ability of the monocytes and macrophages, splenic lymphocyte proliferation, tumor necrosis factor (TNF-α), interleukin-2 (IL-2), serum hemolysin antibody level, blood indicators, and the tumor inhibition rate.
RESULTS:
Treatment with PNS concentration-dependently inhibited the proliferation and significantly promoted apoptosis of cultured H22 cells (P < 0.01). In the tumor-bearing mouse models, PNS alone and its combination with CTX both resulted in obvious enhancement of phagocytosis of the monocyte-macrophages, stimulated the proliferation of splenic lymphocytes, promoted the release of TNF-α and IL-2 and the production of serum hemolysin antibody, and increased the number of white blood cells, red blood cells and lymphocytes in the peripheral blood. Treatment with 480 mg/kg PNS combined with CTX resulted in a tumor inhibition rate of 83.28% (P < 0.01) and a life prolonging rate of 131.25% in the mouse models (P < 0.05).
CONCLUSION
PNS alone or in combination with CTX can improve the immunity and tumor inhibition rate and prolong the survival time of H22 tumor-bearing mice.
Animals
;
Carcinoma, Hepatocellular/pathology*
;
Cyclophosphamide/therapeutic use*
;
Hemolysin Proteins
;
Heterografts
;
Humans
;
Interleukin-2
;
Liver Neoplasms/pathology*
;
Mice
;
Panax notoginseng
;
Saponins/therapeutic use*
;
Tumor Necrosis Factor-alpha
8.Prevention of Deep Vein Thrombosis by Panax Notoginseng Saponins Combined with Low-Molecular-Weight Heparin in Surgical Patients.
Chun-Mei WANG ; Xiang-Feng GUO ; Li-Min LIU ; Ying HUANG ; Liang MENG ; Li-Po SONG ; Ying-Feng WU ; Ya-Chan NING ; Kathleen H REILLY ; Hai-Bo WANG
Chinese journal of integrative medicine 2022;28(9):771-778
OBJECTIVE:
To evaluate the efficacy of deep vein thrombosis (DVT) prevention among real-world surgical inpatients who received panax notoginseng saponins (PNS) combined with low-molecular-weight heparin (LMWH).
METHODS:
A prospective cohort study was conducted among surgical patients between January 2016 and November 2018 in Xuanwu Hospital, Capital Medical University, Beijing, China. Participants received LMWH alone or PNS combined with LMWH for preventing DVT. The primary outcome was incidence of lower extremity DVT, which was screened once a week. Participants in the LMWH group were given LMWH (enoxaparin) via hypodermic injection, 4000-8000 AxalU once daily. Participants in the exposure group received PNS (Xuesaitong oral tablets, 100 mg, 3 times daily) combined with LMWH given the same as LMWH group.
RESULTS:
Of the 325 patients screened for the study, 281 participants were included in the final analysis. The cohort was divided into PNS + LMWH group and LMWH group with 134 and 147 participants, respectively. There was a significant difference of DVT incidence between two groups (P=0.01), with 21 (15.7%) incident DVT in the PNS + LMWH group, and 41 (27.9%) incident DVT in the LMWH group. Compared with participants without DVT, the participants diagnosed with DVT were older and had higher D-dimer level. The multivariate logistic regression model showed a significant lower risk of incident DVT among participants in the PNS + LMWH group compared with the LMWH group (odds ratio 0.46, 95% confidence interval, 0.25-0.86). There were no significant differences in thromboelaslography values (including R, K, Angle, and MA) and differences in severe bleeding between two groups. No symptomatic pulmonary embolism occurred during the study.
CONCLUSION
Combined application of PNS and LMWH can effectively reduce the incidence of DVT among surgical inpatients compared with LMWH monotherapy, without increased risk of bleeding.
Anticoagulants/therapeutic use*
;
Hemorrhage
;
Heparin, Low-Molecular-Weight/therapeutic use*
;
Humans
;
Panax notoginseng
;
Prospective Studies
;
Saponins/therapeutic use*
;
Venous Thrombosis/prevention & control*
9.Preparation and intestinal absorption of Panax notoginseng saponins chitosan nanoparticles.
Peng-Fei XU ; Rui ZHANG ; Zhi-Yu GUAN ; Si-Hui LI ; Dong-Yan ZHOU ; Sheng JIANG ; Jin-Hui FAN ; Peng XU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2022;47(1):95-102
In this experiment, Panax notoginseng saponins chitosan nanoparticles(PNS-NPs) were prepared by self-assembly and their appearance, particle size, encapsulation efficiency, drug loading, polydispersity index(PDI), Zeta potential, and microstructure were characterized. The prepared PNS-NPs were intact in structure, with an average particle size of(209±0.258) nm, encapsulation efficiency of 42.34%±0.28%, a drug loading of 37.63%±0.85%, and a Zeta potential of(39.8±3.122) mV. The intestinal absorption of PNS-NPs in rats was further studied. The established HPLC method of PNS was employed to investigate the effects of pH, perfusion rate, and different drugs(PNS raw materials, Xuesaitong Capsules, and PNS-NPs). The absorption rate constant(K_a) and apparent permeability coefficient(P_(app)) in the duodenum, jejunum, ileum, and colon were calculated and analyzed. As illustrated by the results, the intestinal absorption of PNS-NPs was increased in the perfusion solution at pH 6.8(P<0.05), and perfusion rate had no significant effect on the K_a and P_(app) of PNS-NPs. The intestinal absorption of PNS-NPs was significantly different from that of PNS raw materials and Xuesaitong Capsules(P<0.05), and the intestinal absorption of PNS-NPs was significantly improved.
Animals
;
Chitosan/pharmacology*
;
Intestinal Absorption
;
Nanoparticles
;
Panax notoginseng/chemistry*
;
Rats
;
Saponins/pharmacology*
10.Effects of chloropicrin fumigation on soil and growth and development of Panax notoginseng.
Long LI ; Rong-Feng PU ; Ming-Hua LI ; Chun-Yan DAI ; Kai ZHENG ; Zheng-Qiang JIN ; Chen-Bing MO ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2022;47(3):635-642
The continuous cropping obstacle of Panax notoginseng is serious, and effective control measures are lacking. Soil disinfection with chloropicrin(CP) has been proven to be effective in reducing the obstacles to continuous cropping of other crops. In order to ascertain the effect of CP in the continuous cropping of P. notoginseng, this paper explored the influences of CP at different treatment concentrations(0,30,40,50 kg/Mu, 1 Mu≈667 m~2) on soil macro-element nutrients, soil enzyme activity, growth and development of P. notoginseng, and the accumulation of medicinal components. The results showed that CP fumigation significantly increased the content of total nitrogen, alkali-hydrolyzable nitrogen, ammonium nitrogen, nitrate nitrogen, and available phosphorus in the soil, but it had no significant effect on potassium content. The soil protease activity showed a trend of first increasing and then decreasing with the prolonging of the treatment time. Both the soil urease and acid phosphatase activities showed a trend of first decreasing and then increasing with the prolonging of the treatment time. The higher the CP treatment concentration was, the lower the urease and acid phosphatase activities would be in the soil. The protease activity was relatively high after CP40 treatment, which was better than CP30 and CP50 treatments in promoting the nitrogen-phosphorus-potassium accumulation in P. notoginseng. The seedling survival rates after CP0, CP30, CP40, and CP50 tratments in October were 0, 65.56%, 89.44%, and 83.33%, respectively. Compared with the CP30 and CP50 treatments, CP40 treatment significantly facilitated the growth and development of P. notoginseng, the increase in fresh and dry weights, and the accumulation of root saponins. In summary, CP40 treatment accelerates the increase in soil nitrogen and phosphorus nutrients and their accumulation in P. notoginseng, elevates the seedling survival rate of P. notoginseng, enhances the growth and development of P. notoginseng, and promotes the accumulation of medicinal components. CP40 treatment is therefore recommended in production.
Fumigation
;
Growth and Development
;
Hydrocarbons, Chlorinated
;
Panax notoginseng
;
Soil

Result Analysis
Print
Save
E-mail