1.Effects of 4'-O-methylochnaflavone on endothelial dysfunction induced by palmitic acid in rat cavernous endothelial cells.
Yang Yang GU ; Xiao Hui TAN ; Wen Peng SONG ; Dong FANG ; Wei Dong SONG ; Yi Ming YUAN ; Ning Han FENG ; Rui Li GUAN
Journal of Peking University(Health Sciences) 2022;54(4):599-604
OBJECTIVE:
To investigate the effect of biflavonoid 4'-O-methylochnaflavone (MF) on palmitic acid-induced endothelial dysfunction in rat cavernous endothelial cells (RCECs).
METHODS:
The isolated RCECs were commercially available and randomly divided into four groups: normal+BSA group (NC group), palmitic acid (PA) group, MF group, and icariside Ⅱ (ICA Ⅱ) group. The protein expression levels of protein kinase B (PKB/AKT) and endothelial nitric oxide synthase (eNOS) in each group were evaluated via Western blotting. The differences in the intracellular nitric oxide of RCECs treated by MF or ICA Ⅱ were detected by DAF-FM DA that served as a nitric oxide fluorescent probe. Effects of MF and ICA Ⅱ on cell proliferation of PA-stimulated RCECs were determined via CCK-8 assay.
RESULTS:
The content of nitric oxide in RCECs was significantly increased after the treatment of MF and ICA Ⅱ in comparison with the NC group (P < 0.05). Moreover, compared with ICA Ⅱ group, MF demonstrated a more obvious effect in promoting nitric oxide production (P < 0.05). Compared with the NC group, the expression levels of eNOS and AKT in the PA group were significantly decreased, indicating that a model for simulating the high-fat environment in vitro was successfully constructed (P < 0.05). Meanwhile, the intervention of MF and ICA Ⅱ could effectively increase the expression of eNOS and AKT, suggesting that MF and ICA Ⅱ could promote the recovery of endothelial dysfunction caused by high levels of free fatty acids (P < 0.05). The results of CCK-8 assays showed that PA could significantly reduce the proli-feration ability of RCECs (P < 0.05). Furthermore, the decreased cell viability induced by PA was significantly elevated by treatment with ICA Ⅱ and MF (P < 0.05).
CONCLUSION
In RCECs, MF and ICA Ⅱ could effectively increase the content of nitric oxide. The down-regulation of the expression of proteins associated with the AKT/eNOS pathway after PA treatment revealed that this pathway was involved in the development of endothelial dysfunction, which could be effectively reversed by MF and ICA Ⅱ. In addition, the cell proliferation ability was significantly decreased following PA treatment, but MF and ICA Ⅱ could restore the above changes. Overall, biflavonoid MF has an obvious repairing effect on PA-stimulated endothelial dysfunction.
Animals
;
Biflavonoids/pharmacology*
;
Cells, Cultured
;
Endothelial Cells/metabolism*
;
Nitric Oxide/pharmacology*
;
Nitric Oxide Synthase Type III/pharmacology*
;
Palmitic Acid/pharmacology*
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Signal Transduction
;
Sincalide/pharmacology*
2.Jiangtang Sanhuang tablet inhibits endoplasmic reticulum stress and autophagy in diabetic mouse islet cells.
Journal of Southern Medical University 2022;42(9):1317-1323
OBJECTIVE:
To investigate effects of Jiangtang Sanhuang tablet (JTSHT) for regulating blood glucose and alleviating islet cell damage in db/db mice and its protective effects against endoplasmic reticulum stress (ERS) and autophagy induced by glycolipid toxicity.
METHODS:
Forty db/db mice were randomized into 4 groups for daily intragastric administration of saline, JTSHT of 2.64 and 1.32 g/kg, and metformin at 0.225g/kg for 8 weeks, using 10 C57BL/6J mice as the normal control. After the treatments, the metabolic indexes of the mice were measured, and morphological changes of the islet cells were observed. A mouse islet cell line (MIN6) was exposed to high glucose (22 mmol/L glucose) and 0.1 mmol/L palmitic acid, followed by treatment with the sera from JTSHT- or saline- treated SD rats, alone or in combination with SP600125, and the changes in cell apoptosis, ERS and autophagy were evaluated using flow cytometry, RT-qPCR and Western blotting.
RESULTS:
In db/db mice, treatment with JTSHT significantly improved glucose and lipid metabolism (P < 0.05) and suppressed progressive weight gain (P < 0.05) without significant effect on drinking water volume (P > 0.05). JTSHT was also found to promote repair of islet cell injuries. In the cell experiments, high glucose exposure significantly increased apoptosis rate of MIN6 cells (P < 0.05), which was obviously lowered by treatment with JTSHT-treated rat serum (P < 0.05). Western blotting showed that JTSHT significantly reduced the level of ERS and autophagy caused by glycolipid toxicity in MIN6 cells (P < 0.05). Interference with ERS using SP600125 significantly attenuated the protective effect of JTSHT against MIN6 cell injury, apoptosis and autophagy induced by glycolipid toxicity (P < 0.05).
CONCLUSION
JTSHT has protective effects against glycolipid toxicity in MIN6 cells possibly by inhibiting ERS and autophagy.
Animals
;
Anthracenes
;
Apoptosis
;
Autophagy
;
Blood Glucose
;
Diabetes Mellitus
;
Drinking Water
;
Drugs, Chinese Herbal
;
Endoplasmic Reticulum Stress
;
Glucose/pharmacology*
;
Glycolipids/pharmacology*
;
Islets of Langerhans
;
Metformin
;
Mice
;
Mice, Inbred C57BL
;
Palmitic Acid/pharmacology*
;
Tablets/pharmacology*
3.Palmitic acid suppresses autophagy in neonatal rat cardiomyocytes via the cGAS-STING-IRF3 pathway.
Hui Lin YU ; Qian LIU ; Yong Zheng GUO ; Yong XIA ; Su Xin LUO
Journal of Southern Medical University 2022;42(1):36-44
OBJECTIVE:
To investigate the effect of palmitic acid (PA) on autophagy in neonatal rat cardiomyocytes (NRCMs) and explore the underlying mechanism.
METHODS:
NRCMs were isolated and cultured for 24 h before exposure to 10% BSA and 0.1, 0.3, 0.5, or 0.7 mmol/L PA for 24 h. After the treatments, the expressions of Parkin, PINK1, p62, LC3Ⅱ/ LC3Ⅰ, cGAS, STING and p-IRF3/IRF3 were detected using Western blotting and the cell viability was assessed with CCK8 assay, based on which 0.7 mmol/L was selected as the optimal concentration in subsequent experiments. The effects of cGAS knockdown mediated by cGAS siRNA in the presence of PA on autophagy-related proteins in the NRCMs were determined using Western blotting, and the expressions of P62 and LC3 in the treated cells were examined using immunofluorescence assay.
RESULTS:
PA at different concentrations significantly lowered the expressions of Parkin, PINK1, LC3 Ⅱ/LC3 Ⅰ and LC3 Ⅱ/LC3 Ⅰ+Ⅱ (P < 0.05), increased the expression of p62 (P < 0.05), and inhibited the viability of NRCMs (P < 0.05). Knockdown of cGAS obviously blocked the autophagy-suppressing effect of PA and improved the viability of NRCMs (P < 0.05).
CONCLUSION
PA inhibits autophagy by activating the cGAS-STING-IRF3 pathway to reduce the viability of NRCMs.
Animals
;
Animals, Newborn
;
Autophagy
;
Myocytes, Cardiac
;
Nucleotidyltransferases/pharmacology*
;
Palmitic Acid/pharmacology*
;
Rats
4.Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells.
Li ZHAO ; Shu-Jun JIANG ; Fu-Er LU ; Li-Jun XU ; Xin ZOU ; Kai-Fu WANG ; Hui DONG
Chinese journal of integrative medicine 2016;22(7):496-502
OBJECTIVETo investigate the effects of berberine (BBR) and cinnamic acid (CA), the main active components in Jiaotai Pill (, JTP), on palmitic acid (PA)-induced intracellular triglyceride (TG) accumulation in NIT-1 pancreatic β cells.
METHODSCells were incubated in culture medium containing PA (0.25 mmol/L) for 24 h. Then treatments with BBR (10 μmol/L), CA (100 μmol/L) and the combination of BBR and CA (BBR+CA) were performed respectively. Intracellular lipid accumulation was assessed by Oil Red O staining and TG content was measured by colorimetric assay. The expression of adenosine monophosphate-activated protein kinase (AMPK) protein and its downstream lipogenic and fatty acid oxidation genes, including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), phosphorylation acetyl-coA carboxylase (pACC), carnitine acyl transferase 1 (CPT-1) and sterol regulating element binding protein 1c (SREBP-1c) were determined by Western blot or real time polymerase chain reaction.
RESULTSPA induced an obvious lipid accumulation and a significant increase in intracellular TG content in NIT-1 cells. PA also induced a remarkable decrease in AMPK protein expression and its downstream targets such as pACC and CPT-1. Meanwhile, AMPK downstream lipogenic genes including SREBP-1c mRNA, FAS and ACC protein expressions were increased. Treatments with BBR and BBR+CA, superior to CA, significantly reversed the above genes changes in NIT-1 pancreatic β cells. However, the synergistic effect of BBR and CA on intracellular TG content was not observed in the present study.
CONCLUSIONIt can be concluded that in vitro, BBR and BBR+CA could inhibit PA-induced lipid accumulation by decreasing lipogenesis and increasing lipid oxidation in NIT-1 pancreatic β cells.
AMP-Activated Protein Kinases ; metabolism ; Animals ; Berberine ; chemistry ; pharmacology ; Cell Line ; Cinnamates ; chemistry ; pharmacology ; Fatty Acids ; metabolism ; Gene Expression Regulation ; drug effects ; Insulin-Secreting Cells ; drug effects ; metabolism ; Intracellular Space ; metabolism ; Lipogenesis ; drug effects ; genetics ; Mice ; Oxidation-Reduction ; drug effects ; Palmitic Acid ; toxicity ; Triglycerides ; metabolism
5.The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.
Ji Sung YOON ; Jun Sung MOON ; Yong Woon KIM ; Kyu Chang WON ; Hyoung Woo LEE
Journal of Korean Medical Science 2016;31(4):547-552
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
Animals
;
Anticholesteremic Agents/*pharmacology
;
Antigens, CD36/antagonists & inhibitors/genetics/*metabolism
;
Cells, Cultured
;
Ezetimibe/*pharmacology
;
Flow Cytometry
;
Glucose/toxicity
;
Insulin/genetics/metabolism/secretion
;
Insulin-Secreting Cells/cytology/*drug effects/metabolism
;
Male
;
Palmitic Acid/metabolism
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Real-Time Polymerase Chain Reaction
6.Palmitic acid induces hepatocellular oxidative stress and activation of inflammasomes.
Wen XU ; Yu-Bin GUO ; Xu LI ; Mei-Rong HE ; Si-de LIU
Journal of Southern Medical University 2016;36(5):655-659
OBJECTIVETo evaluate the effect of palmitic acid (PA) on oxidative stress and activation of inflammasomes in hepatocytes.
METHODSTo test the dose-dependent effect of PA on normal murine hepatocytes AML12, the cells were treated with 0, 0.15, 0.25 and 0.4 mmol/L of palmitic acid (PA). The cells were also divided into blank control group, 0.25 mmol/L PA group and 0.25 mmol/L PA+N-acetylcysteine (NAC) group to examine the effect of reactive oxygen species (ROS) on the activation of inflammasomes. After 24 h of treatment, lipid accumulation, total ROS, mitochondrial ROS, expression and localization of NOX4, and expressions of inflammasomes and IL-1β were detected in the hepatocytes.
RESULTSCompared with the control cells, PA treatment of the cells significantly increased cytoplasmic lipid accumulation, concentrations of total ROS (12 463.09±2.72 vs 6691.23±2.45, P=0.00) and mitochondrial ROS (64.98±0.94 vs 45.04±0.92, P=0.00), and the expressions of NOX4, NLRP3, ASC, caspase-1, and IL-1β (1603.52±1.32 vs 2629.33±2.57, P=0.00). The mitochondria and NOX4 were found to be co-localized in the cytoplasm. NAC obviously reduced cellular ROS level stimulated by PA (7782.15±2.87 vs 5445.6±1.17, P=0.00) and suppressed the expressions of NLRP3, ASC and caspase-1.
CONCLUSIONPA treatment can stimulate lipid accumulation in hepatocytes and induce oxidative stress through NOX4 and mitochondria pathway to activate inflammasomes and stimulate the secretion of IL-1β.
Acetylcysteine ; pharmacology ; Animals ; Carrier Proteins ; metabolism ; Caspase 1 ; metabolism ; Cells, Cultured ; Hepatocytes ; drug effects ; metabolism ; Inflammasomes ; drug effects ; metabolism ; Interleukin-1beta ; metabolism ; Mice ; Mitochondria ; drug effects ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; Oxidative Stress ; Palmitic Acid ; pharmacology ; Reactive Oxygen Species ; metabolism
7.Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival.
Yaoting DENG ; Yurika MATSUI ; Wenfei PAN ; Qiu LI ; Zhi-Chun LAI
Protein & Cell 2016;7(5):362-372
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Actins
;
metabolism
;
Adaptor Proteins, Signal Transducing
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Bridged Bicyclo Compounds, Heterocyclic
;
pharmacology
;
Cell Line, Tumor
;
Connective Tissue Growth Factor
;
genetics
;
metabolism
;
pharmacology
;
Cytochalasin D
;
pharmacology
;
Fatty Acids, Nonesterified
;
pharmacology
;
HEK293 Cells
;
Humans
;
Immunohistochemistry
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
Palmitic Acid
;
pharmacology
;
Phosphoproteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Recombinant Proteins
;
genetics
;
metabolism
;
pharmacology
;
Thiazolidines
;
pharmacology
8.Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IkappaB/NF-kappaB, in atherosclerotic cell model.
Ling QIU ; Rong XU ; Siyang WANG ; Shuijun LI ; Hongguang SHENG ; Jiaxi WU ; Yi QU
Experimental & Molecular Medicine 2015;47(7):e171-
Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IkappaB kinase (IKK)/IkappaB/nuclear factor-kappaB (NF-kappaB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IkappaB phosphorylation and the expression of two NF-kappaB subunits (p50 and p65) in the IKK/IkappaB/NF-kappaB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.
Apoptosis/drug effects
;
Atherosclerosis/chemically induced/*drug therapy/immunology/pathology
;
Biphenyl Compounds/chemistry/isolation & purification/*pharmacology
;
C-Reactive Protein/*genetics/immunology
;
Down-Regulation/drug effects
;
Drugs, Chinese Herbal/chemistry/isolation & purification/*pharmacology
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
I-kappa B Kinase/*immunology
;
Lignans/chemistry/isolation & purification/*pharmacology
;
Magnolia/chemistry
;
Palmitic Acid
;
Protein-Serine-Threonine Kinases/*immunology
;
Serum Amyloid P-Component/*genetics/immunology
;
Signal Transduction/drug effects
9.Effects of JAZF1 overexpression on proinflammatory cytokines in hepatocytes induced by palmitic acid.
Rui LIU ; Zhimin LIN ; Yanjun JIA ; Gangyi YANG ; Ling LI ; Ke LI ; Lili ZHANG
Chinese Journal of Hepatology 2015;23(12):950-954
OBJECTIVETo investigate the effects of JAZF1 overexpression on the pro-inflammatory cytokines in hepatic steatosis.
METHODSThe model of hepatic steatosis was established by incubating hepatocytes with palmitic acid (PA) at 0, 0.125, 0.25, 0.5 and 1 mM dose and for 0, 6, 12, 24 and 48 hours, after which recombinant adenovirus expressing JAZF1 (Ad-JAZF1) was introduced to up-regulate expression. Triglyceride level was measured by GOD. Cell viability was detected by CCK-8. The mRNA and protein expression of TNF-alpha, MCP-1, IL-8 and JAZF1 was examined by RT-PCR, ELISA, and western blotting.
RESULTSThe PA-treated hepatocytes showed dose-dependent significant increases in TNF-alpha, MCP-1 and IL-8 mRNA expression for doses up to 0.25 mM; there were no significant increases for the highest doses of 0.5 and 1 mM. The 0.25 mM PA-treated hepatocytes showed time-dependent significant increases in TNF-alpha, MCP-1 and IL-8 mRNA expressions (FTNF-alpha = 26.51, FMCP-1 = 57.20, FIL-8 = 353.85, P less than 0.01), with the maximum level reached at 12 h and followed by a gradual decrease with longer treatment times. JAZF1 mRNA and protein expression was markedly increased in hepatocytes infected with Ad-JAZF1 (P less than 0.01). However, the AP-treated hepatocytes with JAZF1 overexpression showed down-regulation of TNF-alpha, MCP-1 and IL-8 mRNA expression (decreased by 89.69%, 77.68%, and 83.21%, respectively) and secretion (37%, 37% and 41%, respectively, P less than 0.01).
CONCLUSIONStimulation of hepatocytes by the PA fatty acid in vitro promotes mRNA expression of TNF-alpha, MCP-1 and IL-8, but overexpression of JAZF1 inhibits the PA-induced expression and secretion of these factors.
Cell Survival ; Chemokine CCL2 ; metabolism ; Cytokines ; metabolism ; Fatty Liver ; Hepatocytes ; drug effects ; metabolism ; Humans ; Interleukin-8 ; metabolism ; Neoplasm Proteins ; metabolism ; Palmitic Acid ; pharmacology ; RNA, Messenger ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Up-Regulation
10.MicroRNA-34a contributes to the protective effects of glucagon-like peptide-1 against lipotoxicity in INS-1 cells.
Yu-Bing HAN ; Min-Nan WANG ; Qiang LI ; Lin GUO ; Yu-Mei YANG ; Peng-Jie LI ; Wei WANG ; Jin-Chao ZHANG
Chinese Medical Journal 2012;125(23):4202-4208
BACKGROUNDGlucagon-like peptide-1 (GLP-1) reduces fatty acid-induced beta-cell lipotoxicity in diabetes; however, the explicit mechanisms underlying this process are not fully understood. This study was designed to investigate the involvement of microRNA, which regulates gene expression by the sequence-specific inhibition of mRNA transcription in the GLP-1 mediation of beta-cell function.
METHODSThe cell viability and apoptosis were determined using an methyl thiazoleterazolium (MTT) assay and flow cytometry. The expression of genes involved in beta-cell function, including microRNA-34a and sirtuin 1, were investigated using real-time PCR. The underlying mechanisms of microRNA-34a were further explored using cell-transfection assays.
RESULTSA 24-hours incubation of INS-1 cells with palmitate significantly decreased cell viability, increased cell apoptosis and led to the activation of microRNA-34a and the suppression of sirtuin 1. A co-incubation with GLP-1 protected the cells against palmitate-induced toxicity in association with a reduction in palmitate-induced activation of microRNA-34a. Furthermore, palmitate-induced apoptosis was significantly increased in cells that were infected with microRNA-34a mimics and decreased in cells that were infected with microRNA-34a inhibitors.
CONCLUSIONMicroRNA-34a is involved in the mechanism of GLP-1 on the modulation of beta-cell growth and survival.
Animals ; Apoptosis ; drug effects ; Cell Line ; Cell Survival ; drug effects ; Fatty Acids, Nonesterified ; toxicity ; Glucagon-Like Peptide 1 ; pharmacology ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; MicroRNAs ; genetics ; metabolism ; Palmitic Acid ; pharmacology ; Rats ; Real-Time Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail