1.MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN.
Ke WEI ; Jiwen SHI ; Yuhan XIAO ; Wenrui WANG ; Qingling YANG ; Changjie CHEN
Journal of Southern Medical University 2023;43(7):1081-1092
		                        		
		                        			OBJECTIVE:
		                        			To investigate the regulatory effects of miR-30e-5p on biological behaviors of colorectal cancer cells and the role of PTEN/CXCL12 axis in mediating these effects.
		                        		
		                        			METHODS:
		                        			Bioinformatic analysis was performed to explore the differential expression of miR-30e-5p between colorectal cancer tissues and normal tissues. RT-qPCR was used to detect the differential expression of miR-30e-5p in intestinal epithelial cells and colorectal cancer cells. Bioinformatics and dual luciferase assay were used to predict and validate the targeting relationship between miR-30e-5p and PTEN. Human and murine colorectal cancer cell lines were transfected with miR-30e-5p mimics, miR-30e-5p inhibitor, miR-30e-5p mimics+LV-PTEN, or miR-30e-5p inhibitor + si-PTEN. The changes in biological behaviors of the cells were detected using plate clone formation assay, CCK-8 assay, flow cytometry, scratch healing and Transwell assays. PTEN and CXCL12 expressions in the cancer cells were detected by Western blotting. The effects of miR-30e-5p inhibitor on colorectal carcinogenesis and development were observed in nude mice.
		                        		
		                        			RESULTS:
		                        			Bioinformatic analysis showed that miR-30e-5p expression was significantly elevated in colorectal cancer tissues compared with the adjacent tissue (P < 0.01). Higher miR-30e-5p expression was detected in colorectal cancer cell lines than in intestinal epithelial cells (P < 0.01). Dual luciferase assay confirmed the targeting relationship between miR-30e-5p and PTEN (P < 0.05). Transfection with miR-30e-5p mimics significantly enhanced proliferation and metastasis and inhibited apoptosis of the colorectal cancer cells (P < 0.05), and co-transfection with LV-PTEN obviously reversed these changes (P < 0.05). MiR-30e-5p mimics significantly inhibited PTEN expression and enhanced CXCL12 expression in the cancer cells (P < 0.01), and miR-30e-5p inhibitor produced the opposite effect. Transfection with miR-30e-5p inhibitor caused cell cycle arrest in the cancer cells, which was reversed by co-transfection with si-PTEN (P < 0.05). In the in vivo experiments, the colorectal cancer cells transfected with miR-30e-5p inhibitor showed significantly lowered tumorigenesis.
		                        		
		                        			CONCLUSION
		                        			Overexpression of miR-30e-5p promotes the malignant behaviors of colorectal cancer cells by downregulating PTEN to activate the CXCL12 axis.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/physiology*
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Cell Movement/physiology*
		                        			;
		                        		
		                        			Colorectal Neoplasms/pathology*
		                        			;
		                        		
		                        			Luciferases/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			Chemokine CXCL12/metabolism*
		                        			
		                        		
		                        	
2.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
		                        		
		                        			OBJECTIVE:
		                        			To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
		                        		
		                        			METHODS:
		                        			HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
		                        		
		                        			RESULTS:
		                        			CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
		                        		
		                        			CONCLUSION
		                        			Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Atorvastatin/pharmacology*
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/pharmacology*
		                        			;
		                        		
		                        			Sincalide/metabolism*
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm/genetics*
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Leukemia, Promyelocytic, Acute/drug therapy*
		                        			;
		                        		
		                        			Doxorubicin/pharmacology*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			RNA, Small Interfering/pharmacology*
		                        			;
		                        		
		                        			Glycolysis
		                        			;
		                        		
		                        			Glucose/therapeutic use*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			
		                        		
		                        	
3.Inhibition of GAS5 promoted invasion, migration and epithelial-mesenchymal transition of colorectal cancer cells via miR-21/PTEN/Akt axis.
Bing Hong XIONG ; Sha Sha LI ; Zi Yang REN ; Zhe ZHANG ; Ya Zhou LIU ; Yue SUN ; Jun Lin CHI ; Hua You LUO
Chinese Journal of Oncology 2022;44(11):1168-1174
		                        		
		                        			
		                        			Objective: To explore the effect of growth arrest-specific5 (GAS5) inhibition on the proliferation, colony formation, invasion, migration andepithelial-mesenchymal transition(EMT), cancer cell stem of HCT-116 and its mechanism. Methods: The colorectal carcinoma (CRC) cell HCT116 was divided into blank control, negative control (NC), si-GAS5 and si-GAS5+ miR-21 inhibitor groups. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of miR-21 and GAS5 at 48 h after transfection. The binding site of GAS5 and miR-21 was determined by luciferase reporter array. Cell proliferation ability was detected by CCK-8 assay. Cell colony ability was detected by colony formation assay. Cell invasion and migration abilities were detected by Transwell assay. Cell cycle and apoptosis were examined by flow cytometer (FCM). The protein levels of EMT associated factors including Snail, N-cadherin, vimentin, E-cadherin, stem cell related factors including CD44, SOX2, Oct2, and PTEN/Akt signal pathway associated factors were examined by western blotting. Results: The expression levels of miR-21 in blank, NC, si-GAS5 group were 1.00±0.10, 1.00±0.10, 1.80±0.20, the absorbance values were 0.51±0.02, 0.50±0.01 and 0.65±0.01, the cell clones were 90±4, 91±5, 200±8, the invaded cells were 118±3, 119±3, 150±4, the migrated cells were 110±2, 108±2, 127±2, the cell ratios in G(1) phase were (49.3±2.1)%, (50.1±2.0)% and (42.2±1.1)%, the cell ratios in S phase were (19.2±1.2)%, (20.2±1.1)% and (28.3±2.2)%, the cell apoptotic ratios were (14.4±2.2)%, (14.5±2.1)% and (7.2±1.3)%. These results indicated that inhibition of GAS5 up regulated the expression level of miR-21, promoted cell proliferation, invasion and migration, decreased G(1)-phase cells and increased S-phase cells, and suppressed cell apoptosis (P<0.05). Moreover, inhibition of GAS5 up regulated the expressions of Snail, N-cadherin, vimentin, Sox2, CD44, Oct2 and p-Akt in HCT-116 cells (P<0.05), while down regulated the expressions of E-cadherin and PTEN (P<0.05). Inhibition of miR-21 reversed the impact of GAS5 knockdown on PTEN/Akt signaling pathway (P<0.05). Conclusion: GAS5 can act as a competing endogenous RNA for miR-21, and down regulation of GAS5 can promote the development of CRC by activating the miR-21/PTEN/Akt signaling pathway and promoting the acquisition of EMT and tumor cell stemness.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cadherins/metabolism*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement/genetics*
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Colorectal Neoplasms/pathology*
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			Vimentin/metabolism*
		                        			
		                        		
		                        	
4.MiR-372-5p regulates PI3K/AKT/CXCL12 signaling pathway by targeting PTEN to promote colorectal cancer cell metastasis.
Xiu Ru SHI ; Ke WEI ; Yu Lun WU ; Wen Rui WANG ; Qing Ling YANG ; Chang Jie CHEN
Journal of Southern Medical University 2022;42(8):1191-1197
		                        		
		                        			OBJECTIVE:
		                        			To investigate whether miR-372-5p regulates PI3K/AKT/CXCL12 signaling pathway by targeting PTEN to promote metastasis of colorectal cancer cells.
		                        		
		                        			METHODS:
		                        			We detected the differential expression of miR-372-5p using RT-qRCR in colorectal cancer and adjacent tissues, colorectal cancer cells and normal intestinal epithelial cells. Bioinformatic analysis and double luciferase assay were performed for verification of the targeting relationship between miR-372-5p and PTEN. Western blotting was used to assess the effects of transfection with miR-372-5p inhibitor and miR-372-5p mimics alone, co-transfection with miR-372-5p inhibitor and si-PTEN, and co-transfection with miR-372-5p mimics and PI3K inhibitor on the expressions of PTEN and CXCL12 and the activation of PI3K/AKT signal pathway; Transwell assay and scratch assay were used to examine the changes in the migration ability of the transfected cells, the cells co-transfected with miR-372-5p mimics and si-CXCL12, and the cells treated with conditioned medium from HCT116 cells transfected with miR-372-5p mimics.
		                        		
		                        			RESULTS:
		                        			The expression of miR-372-5p was significantly higher in colorectal cancer tissues than in adjacent tissues, and higher in HCT116 and SW620 cells than in NCM460 cells (P < 0.01). Double luciferase assay confirmed that PTEN was a potential target gene of miR-372-5p (P < 0.05). Transfection of HCT116 cells with miR-372-5p mimics obviously decreased PTEN protein expression, increase CXCL12 expression and the phosphorylation level of AKT, and lowered the cell migration ability, while transfection with miR-372-5p inhibitor produced the opposite effects (P < 0.05); si-PTEN obviously neutralized the effect of miR-372-5p inhibitor (P < 0.01). PI3K inhibitor significantly decreased CXCL12 expression and inhibited the cell migration (P < 0.05), and this effect was mitigated by miR-372-5p mimics (P < 0.01). Treatment with the conditioned medium from HCT116 cells transfected with miR-372-5p mimics significantly enhanced the migration ability of NCM460 cells, and this effect was suppressed by transfection with si-CXCL12 (P < 0.01).
		                        		
		                        			CONCLUSION
		                        			MiR-372-5p activates PI3K/AKT signaling pathway by targeting PTEN and up-regulates CXCL12 expression to promoting metastasis of colorectal cancer cells.
		                        		
		                        		
		                        		
		                        			Chemokine CXCL12/metabolism*
		                        			;
		                        		
		                        			Colorectal Neoplasms/pathology*
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Neoplasm Metastasis
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
5.Effects of adenovirus-mediated shRNA down-regulates PTEN expression on fibril-binding proteins vinculin, filamin A and cortactin in activated hepatic stellate cells.
Li Sen HAO ; Jie SONG ; Ming Ting ZHANG ; Xiao Jie SONG ; Mei Yu JIANG ; Jing Xiu JI ; Yan Bo MO ; Jing WANG
Chinese Journal of Hepatology 2022;30(1):38-44
		                        		
		                        			
		                        			Objective: To investigate the effect of adenovirus-mediated shRNA down-regulating phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression on vinculin, filamin A, and cortactin in activated hepatic stellate cells (HSCs). Methods: Activated rats hepatic stellate cell line (HSC-T6) was cultured in vitro. Recombinant adenovirus Ad-shRNA/PTEN carrying PTEN targeted RNA interference sequence [short hairpin RNA (shRNA)] and empty control virus Ad-GFP were transfected into HSCs. The PTEN mRNA and protein expression of HSCs in each group were detected by real-time fluorescence quantitative PCR and Western blot. The expressional change of vinculin, filamin A and cortactin in HSCs of each group were detected by confocal laser scanning immunofluorescence microscope. Image-pro plus 6.0 software was used for image analysis and processing. The integrated optical density (IOD) of the fluorescence protein expression was measured. The experiment was divided into three groups: control group (DMEM instead of adenovirus solution in the adenovirus transfection step), Ad-GFP group (transfected with empty virus Ad-GFP only expressing green fluorescent protein), and Ad-shRNA/PTEN group (recombinant adenovirus Ad-shRNA/PTEN carrying shRNA targeting PTEN and expressing green fluorescent protein). One-way analysis of variance was used for comparison of mean value among the three groups, and LSD-test was used for comparison between the groups. Results: shRNA targeted PTEN was successfully transfected and the expression of PTEN mRNA and protein in HSC (P < 0.05) was significantly down-regulated. HSCs vinculin was mainly expressed in the cytoplasm. HSCs vinculin fluorescence IOD in the Ad-shRNA/PTEN group (19 758.83 ± 1 520.60) was higher than control (7 737.16 ± 279.93) and Ad-GFP group (7 725.50 ± 373.03) (P < 0.05), but there was no statistically significant difference between control group and Ad-GFP group (P > 0.05). There was no statistically significant difference in the fluorescence IOD of Filamin A among the three groups (P > 0.05), but the subcellular distribution of Filamin A among the three groups were changed. Filamin A in the Ad-shrNA /PTEN HSC group was mainly distributed in the cytoplasm. Filamin A HSC was mainly located in the nucleus.The filamin A HSC in the control group and Ad-GFP group was mainly located in the nucleus. The nucleocytoplasmic ratio of Filamin A in the AD-shrNA /PTEN group (0.60 ± 0.15) was significantly lower than control group (1.20 ± 0.15) and Ad-GFP group (1.08 ± 0.23), P < 0.05. but there was no statistically significant difference in filamin A nucleocytoplasmic ratio of HSC between the control group and the Ad-GFP group (P > 0.05). Cortactin HSCs in the three groups was mainly distributed in the cytoplasm. The cortactin fluorescence IOD of HSCs in the Ad-shRNA/PTEN group was significantly higher than control group (22 959.94 ± 1 710.42) and the Ad-GFP group (22 547.11 ± 1 588.72 ) (P < 0.05), while there was no statistically significant difference in the IOD of cortactin fluorescence in HSCs between the control group and the Ad-GFP group (P > 0.05). Conclusion: The down-regulation of PTEN expression raises the expression of microfilament-binding protein vinculin and cortactin, and changes the subcellular distribution of another microfilament binding protein filamin A, that is, translocation from nucleus to the cytoplasm in activated HSC in vitro.
		                        		
		                        		
		                        		
		                        			Adenoviridae/metabolism*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cortactin
		                        			;
		                        		
		                        			Filamins/genetics*
		                        			;
		                        		
		                        			Hepatic Stellate Cells/metabolism*
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			RNA, Small Interfering/genetics*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Vinculin/genetics*
		                        			
		                        		
		                        	
6.Cancer cells corrupt normal epithelial cells through miR-let-7c-rich small extracellular vesicle-mediated downregulation of p53/PTEN.
Weilian LIANG ; Yang CHEN ; Hanzhe LIU ; Hui ZHAO ; Tingting LUO ; Hokeung TANG ; Xiaocheng ZHOU ; Erhui JIANG ; Zhe SHAO ; Ke LIU ; Zhengjun SHANG
International Journal of Oral Science 2022;14(1):36-36
		                        		
		                        			
		                        			Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.
		                        		
		                        		
		                        		
		                        			Carcinoma, Squamous Cell/pathology*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Epithelial Cells/metabolism*
		                        			;
		                        		
		                        			Extracellular Vesicles/pathology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Mouth Neoplasms/pathology*
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53/metabolism*
		                        			
		                        		
		                        	
7.Effects of leptin on proliferation and differentiation of hypoxic rat retinal progenitor cells in vitro.
Yao XING ; Zi Yao LIU ; Xiao Hui ZHANG ; Jian Ming WANG
Journal of Southern Medical University 2022;42(3):354-359
		                        		
		                        			OBJECTIVE:
		                        			To investigate the the effects of leptin on the proliferation, differentiation and PTEN expression of rat retinal progenitor cells (RPCs) cultured under hypoxic condition.
		                        		
		                        			METHODS:
		                        			SD rat RPCs were cultured in normoxic conditions or exposed to hypoxia in the presence of 0, 0.3, 1.0, 3.0, 10, and 30 nmol/L leptin for 12, 48 and 72 h, and the cell viability was assessed using cell counting kit 8 (CCK 8) assay. The RPCs in primary culture were divided into control group, hypoxia group, and hypoxia+leptin group, and after 48 h of culture, the cell medium was replaced with differentiation medium and the cells were further cultured for 6 days. Immunofluorescence staining was employed to detect the cells positive for β-tubulin III and GFAP, and Western blotting was used to examine the expression of PTEN at 48 h of cell culture.
		                        		
		                        			RESULTS:
		                        			The first generation of RPCs showed suspended growth in the medium with abundant and bright cellular plasma and formed mulberry like cell spheres after 2 days of culture. Treatment with low-dose leptin (below 3.0 nmol/L) for 48 h obviously improved the viability of RPCs cultured in hypoxia, while at high concentrations (above 10 nmol/L), leptin significantly suppressed the cell viability (P < 0.05). The cells treated with 3.0 nmol/L leptin for 48 h showed the highest viability (P < 0.05). After treatment with 3.0 nmol/L leptin for 48 h, the cells with hypoxic exposure showed similar GFAP and β-tubulin Ⅲ positivity with the control cells (P>0.05), but exhibited an obvious down-regulation of PTEN protein expression compared with the control cells (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			In rat RPCs with hypoxic exposure, treatment with low dose leptin can promote the cell proliferation and suppress cellular PTEN protein expression without causing significant effects on cell differentiation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation/drug effects*
		                        			;
		                        		
		                        			Cell Hypoxia/drug effects*
		                        			;
		                        		
		                        			Cell Proliferation/drug effects*
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Leptin/pharmacology*
		                        			;
		                        		
		                        			PTEN Phosphohydrolase/metabolism*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Retina/metabolism*
		                        			;
		                        		
		                        			Stem Cells/metabolism*
		                        			;
		                        		
		                        			Tubulin
		                        			
		                        		
		                        	
8.Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury.
Frontiers of Medicine 2019;13(2):131-137
		                        		
		                        			
		                        			The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Axons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			Genetic Enhancement
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nerve Regeneration
		                        			;
		                        		
		                        			PTEN Phosphohydrolase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Recovery of Function
		                        			;
		                        		
		                        			Spinal Cord Injuries
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Tissue Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Tissue Scaffolds
		                        			
		                        		
		                        	
9.Effect of Parkinson's disease-relevant protein DJ-1 on cell proliferation, apoptosis, invasion and migration in human osteosarcoma cells.
Hongwei LI ; Xuchang HU ; Bing MA ; Haihong ZHANG
Journal of Central South University(Medical Sciences) 2018;43(10):1054-1060
		                        		
		                        			
		                        			To investigate the effect of Parkinson's disease related protein DJ-1 on the cell proliferation, apoptosis, invasion and migration in human osteosarcoma cells and the underlying molecular mechanisms. 
 Methods: The protein expression levels of DJ-1 were detected in human osteosarcoma cell lines (MG-63, Saos-2, and U2OS) and human osteoblast cell line hFOB1.19 with or without deficiency in phosphatase and tensin homolog deleted from chromosome 10 (PTEN) were detected by Western blot. Osteosarcoma cells were treated with DJ-1 siRNA, and then the protein expression levels of DJ-1 were detected by Western blot. Cell survival rate of osteosarcoma cells was detected by cell counting kit-8 (CCK-8) assay. Cell apoptosis of osteosarcoma cells was measured by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining method. Cell invasive and migration ability of osteosarcoma cells were examined by transwell invasion and migration assay. 
 Results: Compared with that of human osteoblast cell line (hFOB1.19), the protein expression level of DJ-1 was significantly upregulated in human osteosarcoma cell lines (MG-63, Saos-2, and U2OS) (all P<0.05), and U2OS had the highest level of DJ-1 when compared with the other three cell lines (P<0.01). DJ-1 siRNA could significantly down-regulate the DJ-1 protein expression in U2OS cells, and also diminish the cell survival rate. Moreover, DJ-1 down-regulation of DJ-1 could promote cell apoptosis, suppress the ability of cell invasion and migration, and increase the PTEN protein expression level (all P<0.05). In addition, the protein expression level of PTEN was markedly up-regulated in human osteosarcoma cell lines when compared with that in the hFOB1.19 cells (P<0.05). 
 Conclusion: DJ-1 can promote the cell proliferation, inhibit cell apoptosis, and decrease the ability of cell invasion and migration, and the potential underlying mechanisms may be associated with the up-regulation of PTEN protein expression.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			PTEN Phosphohydrolase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Parkinson Disease
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Protein Deglycase DJ-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
10.Mechanism of gambogenic acid in resisting angiogenesis of lung cancer in vitro.
Hui CHENG ; Yun-Long WANG ; Jing-Jing SU ; Rong-Feng HU ; Qing-Lin LI
China Journal of Chinese Materia Medica 2018;43(21):4311-4316
		                        		
		                        			
		                        			The aim of this paper was to observe the effect of gambogenic acid on angiogenesis of lung cancer and its preliminary mechanism. After culturing lung adenocarcinoma A549 cells, the conditioned medium was treated with gambogenic acid and then used to culture human umbilical vein endothelial cells (HUVECs) to establish the indirect contact cell co-culture system. A two-dimensional culture model of HUVEC was established with matrigel to observe the effect of gambogenic acid on angiogenesis. DAPI staining was used to observe the morphological changes in HUVEC cells after treatment with gambogenic acid under the fluorescence microscope. Annexin V-FITC/PI staining and flow cytometry analysis were used to determine gambogenic acid's effect on HUVEC cell apoptosis rate. The protein expressions of PI3K, p-PI3K, Akt, p-Akt were measured by Western blot. PTEN-siRNA was transfected into cells, and RT-PCR was used to detect the expression levels of PI3K and Akt genes. Gambogenic acid can significantly inhibit angiogenesis, and its inhibitory effect was dose-dependent. DAPI staining showed apoptotic morphological features of HUVEC cells under fluorescence microscope. Annexin V-FITC/PI staining showed that gambogenic acid induced apoptosis in HUVECs. The results of Western blot showed that the expressions of p-PI3K and p-Akt protein were down-regulated with gambogenic acid, while the expressions of PI3K and Akt protein was insignificant. The results of RT-PCR indicated that the expressions of PI3K and Akt protein were up-regulated by PTEN siRNA. Gambogenic acid can inhibit angiogenesis in lung cancer in vitro, and the mechanism of inhibiting angiogenesis may be related to the PI3K/Akt signaling pathway.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Neovascularization, Pathologic
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			PTEN Phosphohydrolase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Xanthenes
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail