1.Anti-Hypertensive Action of Fenofibrate via UCP2 Upregulation Mediated by PPAR Activation in Baroreflex Afferent Pathway.
Jian GUAN ; Miao ZHAO ; Chao HE ; Xue LI ; Ying LI ; Jie SUN ; Wei WANG ; Ya-Li CUI ; Qing ZHANG ; Bai-Yan LI ; Guo-Fen QIAO
Neuroscience Bulletin 2019;35(1):15-24
Fenofibrate, an agonist for peroxisome proliferator-activated receptor alpha (PPAR-α), lowers blood pressure, but whether this action is mediated via baroreflex afferents has not been elucidated. In this study, the distribution of PPAR-α and PPAR-γ was assessed in the nodose ganglion (NG) and the nucleus of the solitary tract (NTS). Hypertension induced by drinking high fructose (HFD) was reduced, along with complete restoration of impaired baroreceptor sensitivity, by chronic treatment with fenofibrate. The molecular data also showed that both PPAR-α and PPAR-γ were dramatically up-regulated in the NG and NTS of the HFD group. Expression of the downstream signaling molecule of PPAR-α, the mitochondrial uncoupling protein 2 (UCP2), was up-regulated in the baroreflex afferent pathway under similar experimental conditions, along with amelioration of reduced superoxide dismutase activity and increased superoxide in HFD rats. These results suggest that chronic treatment with fenofibrate plays a crucial role in the neural control of blood pressure by improving baroreflex afferent function due at least partially to PPAR-mediated up-regulation of UCP2 expression and reduction of oxidative stress.
Afferent Pathways
;
drug effects
;
Animals
;
Antihypertensive Agents
;
pharmacology
;
Baroreflex
;
drug effects
;
Blood Pressure
;
drug effects
;
Fenofibrate
;
pharmacology
;
Male
;
Oxidative Stress
;
drug effects
;
PPAR gamma
;
drug effects
;
metabolism
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Transcriptional Activation
;
drug effects
;
Uncoupling Protein 2
;
drug effects
;
metabolism
;
Up-Regulation
2.The Development of Metabolic Derangement in Male Offspring after Perinatal Exposure to Di-(2-Ethylhexyl) Phthalate.
Yun-Jung YANG ; Moon-Seo PARK ; Eui-Jin LEE ; Yeon-Pyo HONG
Biomedical and Environmental Sciences 2018;31(7):531-534
Adiposity
;
drug effects
;
Animals
;
Diethylhexyl Phthalate
;
toxicity
;
Female
;
Gene Expression Regulation, Developmental
;
drug effects
;
Male
;
Maternal Exposure
;
Metabolic Diseases
;
chemically induced
;
PPAR gamma
;
genetics
;
metabolism
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
Rats
;
Rats, Sprague-Dawley
3.Effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by DSS in mice.
Xing-Jun XIONG ; Xiao-Mei LI ; Yu-Min HE ; Xiao-Qin LI ; Hai-Yan XU ; Min-Lu FENG ; Hai-Bo HE ; Ji-Hong ZHANG ; Shu ZHU ; KOMATSU KATSUKO ; Kun ZOU
China Journal of Chinese Materia Medica 2018;43(21):4295-4304
To observe the effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by dextran sulfate sodium (DSS) in mice, C57BL/6 mice were randomly divided into normal group, model group, total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) groups and sulfasalazine (250 mg·kg⁻¹) group. The ulcerative colitis (UC) model was induced by orally administering 2.5% DSS to the experimental mice, and the corresponding drugs were given to each group 3 days before the administration with 2.5% DSS. The normal group and the model group were given the equal volume of 0.5% carboxymethyl cellulose sodium solution by gavage continuously for 10 days, q.d. The general conditions of the mice were observed on a daily basis, and the disease activity index (DAI) score was recorded. On the 10th day after the treatment, mice were put to death, the contents of TNF-α, IL-1β, IL-6, IFN-γ, IL-4 and IL-10 in the blood were detected, colon length was measured, colon mucosa damage index (CMDI) score was calculated, and MPO activity detection and histomorphology analysis were conducted. Real-time PCR was applied to detect the mRNA expressions of E-cadherin, occluding,MUC2 and TFF3; the protein expressions of SIRT1, IKKβ, p-IKKβ, IκBα, p-IκBα and cytosol and nucleus PPARγ, NF-κBp65 in intestinal tissue were detected by western blot. The results indicated that total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) could significantly improve the general conditions of UC mice, reduce the DAI, CMDI and histopathological scores, increase the colon length, reduce the colonic mucosa ulcers, erosion and inflammatory infiltration, restore the normal intestinal mucosal barrier function, reduce the contents of TNF-α, IL-1β, IL-6, IFN-γ, increase the contents of IL-4 and IL-10 in the blood, inhibit MPO activity in colon tissue, up-regulate the mRNA expressions of E-cadherin, occludin, MUC2 and TFF3 in colon tissue, down-regulate the protein expressions of cytosol PPARγ, tissue p-IKKβ, p-IκBα and nucleus NF-κBp65 in the colon tissue, decrease the p-IKKβ/IKKβ and p-IκBα/IκBα ratios, up-regulate the protein expressions of nucleus PPARγ, tissue SIRT1 and cytosol NF-κBp65 (<0.05 or <0.01, respectively), with a dose-effect relationship between the total triterpenoids of C. speciosa treated groups. These findings suggested that total triterpenoids of C. speciosa had a significantly therapeutic effect on UC mice induced by DSS, its mechanism might be related to the regulation of PPARγ/SIRT1/NF-κBp65 signaling pathway, the inhibition of pro-inflammatory factor formation and the up-regulation of protein expression of protective factors.
Animals
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
Dextran Sulfate
;
Disease Models, Animal
;
Intestinal Mucosa
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
PPAR gamma
;
metabolism
;
Random Allocation
;
Rosaceae
;
chemistry
;
Signal Transduction
;
drug effects
;
Sirtuin 1
;
metabolism
;
Transcription Factor RelA
;
metabolism
4.Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.
Alexandre VALLÉE ; Yves LECARPENTIER ; Rémy GUILLEVIN ; Jean-Noël VALLÉE
Neuroscience Bulletin 2018;34(3):573-588
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Animals
;
Brain Neoplasms
;
metabolism
;
therapy
;
Dacarbazine
;
analogs & derivatives
;
pharmacology
;
Down-Regulation
;
drug effects
;
Glioma
;
metabolism
;
therapy
;
Humans
;
PPAR gamma
;
metabolism
;
Temozolomide
;
Wnt Signaling Pathway
;
drug effects
;
physiology
5.Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.
Yang CHENG ; Jing-Yin MAI ; Mei-Feng WANG ; Gao-Feng CHEN ; Jian PING
Chinese journal of integrative medicine 2017;23(1):48-54
OBJECTIVETo study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR).
METHODSFifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR.
RESULTSCompared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01).
CONCLUSIONTFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.
Actins ; metabolism ; Animals ; Blotting, Western ; Body Weight ; drug effects ; Collagen Type I ; metabolism ; Dimethylnitrosamine ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; therapeutic use ; Hydroxyproline ; metabolism ; Liver ; drug effects ; pathology ; Liver Cirrhosis ; blood ; drug therapy ; genetics ; pathology ; Male ; Organ Size ; drug effects ; PPAR gamma ; genetics ; metabolism ; Plant Extracts ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Uncoupling Protein 2 ; genetics ; metabolism
6.Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma.
Hwa Young LEE ; Chin Kook RHEE ; Ji Young KANG ; Chan Kwon PARK ; Sook Young LEE ; Soon Suk KWON ; Young Kyoon KIM ; Hyoung Kyu YOON
The Korean Journal of Internal Medicine 2016;31(1):89-97
BACKGROUND/AIMS: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. METHODS: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. RESULTS: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-kappaB. CONCLUSIONS: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-kappaB pathways.
Actins/metabolism
;
Administration, Inhalation
;
Airway Remodeling/*drug effects
;
Animals
;
Anti-Asthmatic Agents/*administration & dosage
;
Asthma/chemically induced/*drug therapy/metabolism/physiopathology
;
Chronic Disease
;
Collagen/metabolism
;
Disease Models, Animal
;
Female
;
Lung/*drug effects/metabolism/physiopathology
;
Mice, Inbred BALB C
;
NF-kappa B/metabolism
;
Ovalbumin
;
PPAR gamma/agonists/metabolism
;
Pneumonia/chemically induced/physiopathology
;
Pulmonary Eosinophilia/chemically induced/prevention & control
;
Signal Transduction/drug effects
;
Thiazolidinediones/*administration & dosage
;
Toll-Like Receptor 4/metabolism
7.Peroxisome proliferator-activated receptor-γ agonist pioglitazone fails to attenuate renal fibrosis caused by unilateral ureteral obstruction in mice.
Ying ZHANG ; Jin WANG ; Qiao-dan ZHOU ; Cong-hui ZHANG ; Qing LI ; Shuai HUANG ; Juan ZHAN ; Kun WANG ; Yan-yan LIU ; Gang XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):41-47
Renal tubulointerstitial fibrosis is the common ending of progressive renal disease. It is worth developing new ways to stop the progress of renal fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been studied to treat diabetic nephropathy, cisplatin-induced acute renal injury, ischemia reperfusion injury and adriamycin nephropathy. In this study, unilateral ureteral obstruction (UUO) was used to establish a different renal fibrosis model. PPAR? agonist pioglitazone was administrated by oral gavage and saline was used as control. At 7th and 14th day after the operation, mice were sacrificed for fibrosis test and T lymphocytes subsets test. Unexpectedly, through MASSON staining, immunohistochemistry for α-SMA, and Western blotting for a-SMA and PDGFR-β, we found that pioglitazone failed to attenuate renal fibrosis in UUO mice. However, flow cytometry showed that pioglitazone down-regulated Th1 cells, and up-regulated Th2 cells, Th17 cells and Treg cells. But the Th17/Treg ratio had no significant change by pioglitazone. Real-time PCR results showed that TGF-β and MCP-1 had no significant changes, at the same time, CD4(+) T cells associated cytokines were partially regulated by pioglitazone pretreatment. Taken together, pioglitazone failed to suppress renal fibrosis progression caused by UUO.
Animals
;
Chemokine CCL2
;
metabolism
;
Fibrosis
;
Kidney
;
pathology
;
Kidney Diseases
;
drug therapy
;
etiology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
PPAR gamma
;
agonists
;
T-Lymphocyte Subsets
;
drug effects
;
Thiazolidinediones
;
administration & dosage
;
pharmacology
;
therapeutic use
;
Transforming Growth Factor beta
;
metabolism
;
Urethral Obstruction
;
complications
8.Effect of 15-Deoxy-△(12,14)-prostaglandin J2 on Expression of Macrophage Migration Inhibitory Factor in Mouse Monocyte/macrophage Cell Line J774A.1.
Wei-Yang LI ; Yu-Meng SHI ; Xin LIU ; Lin YANG ; Li-Ying L I
Acta Academiae Medicinae Sinicae 2016;38(3):247-252
Objective To investigate the effect of 15-Deoxy-△(12,14)-prostaglandin J2 (15 d-PGJ2) on the expression of macrophage migration inhibitory factor (MIF) and its underlying mechanism in J774A.1. Methods The murine monocyte/macrophage cell line J774A.1 were divided into six groups:lipopolysaccharide (LPS) group,incubated with 1 μg/ml LPS for 1 h;normal control group,incubated with PBS for 1 h;negative control group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h;15 d-PGJ2 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h followed by 1 μg/ml LPS for 1 h;GW9662 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h following GW9662 10 μmol/L for 1 h,and then incubated with 1 μg/ml LPS for 1 h;and Vehicle group,control of GW9662,GW9662 was replaced by its solvent DMSO. The expression of MIF was detected via immunofluorescence and agarose gel electrophoresis. RT-qPCR and Western blotting were used to test whether 15 d-PGJ2 could regulate mRNA and protein expression of MIF in J774A.1 upon LPS challenge. The effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist GW9662 on the regulation of MIF by 15 d-PGJ2 was observed. The effects of 15 d-PGJ2 on the nuclear translocation of PPAR-γ upon LPS challenge were detected via high content screening analysis. Results MIF DNA and protein expressions were detected in J774A.1. MIF mRNA expression was up-regulated (1.75±0.09,P=0.037) when challenged with LPS and 15 d-PGJ2 inhibited its upregulation (0.84±0.08,P=0.026) in J774A.1. The protein level was consistent with the mRNA level. PPAR-γ antagonist GW9662 reversed the effect of 15 d-PGJ2 (mRNA,1.48±0.06,P=0.016;protein,1.28). Furthermore,nuclear translocation of PPAR-γ was regulated by 15 d-PGJ2 in J774A.1 upon LPS challenge(1.39±0.02 vs. 1.01±0.03,P=0.003). Conclusion 15 d-PGJ2 may down-regulate the MIF expression in J774A.1 in a PPAR-γ-dependent manner.
Anilides
;
pharmacology
;
Animals
;
Cell Line
;
Intramolecular Oxidoreductases
;
metabolism
;
Lipopolysaccharides
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Mice
;
Monocytes
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
9.Ulinastatin inhibits hypoxia-induced phenotype modulation of pulmonary artery smooth muscle cells by up-regulating PPAR-γ expression.
Kun TANG ; Chang LIU ; Lin CHEN ; Jing GAO ; Chao ZHANG
Journal of Southern Medical University 2016;36(10):1322-1327
OBJECTIVETo evaluate the effect of ulinastatin on hypoxia-induced phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) and explore the underlying mechanism.
METHODSCultured PASMCs from SD rats were exposed to normoxic condition, normoxia with ulinastatin treatment, hypoxia, or hypoxia with ulinastatin treatment. After 24 h of exposures, the cells were examined for SM-α-actin and caplonin expressions with immunofluorescence assay and for cell migration with CCK-8 andH-TdR assays. Western blotting was used for detecting the expressions of PPAR-γ in the cells, and PPAR-γ-responsive firefly luciferase reporter was employed for measuring the transcriptional activity of PPAR-γ. The PPAR-γ inhibitor GW9662 was used to explore the mechanism of the inhibitory effect of ulinastatin on hypoxia induced-phenotype modulation of PASMCs by measuring the changes in cell proliferation and migration.
RESULTSUlinastatin obviously enhanced the expressions of SM-α-actin and calponin (P<0.05), inhibited the proliferation and migration (P<0.05), and up-regulated the expression of PPAR-γ in PASMCs exposed to hypoxia (P<0.05). Pretreatment of the cells with GW9662 abolished the effect of ulinastatin on hypoxia-induced phenotype modulation of PASMCs and enhanced the cell proliferation and migration (P<0.05).
CONCLUSIONUlinastatin inhibits hypoxia-induced phenotype modulation of PASMCs from rats possibly by up-regulating the expression of PPAR-γ.
Actins ; metabolism ; Animals ; Calcium-Binding Proteins ; metabolism ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Glycoproteins ; pharmacology ; Microfilament Proteins ; metabolism ; Myocytes, Smooth Muscle ; cytology ; drug effects ; PPAR gamma ; metabolism ; Phenotype ; Pulmonary Artery ; cytology ; Rats ; Rats, Sprague-Dawley ; Up-Regulation
10.Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.
Yunk-Yung HAN ; Mi-Young SONG ; Min-Sub HWANG ; Ji-Hye HWANG ; Yong-Ki PARK ; Hyo-Won JUNG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(9):671-676
Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity.
3T3-L1 Cells
;
Adipocytes
;
cytology
;
drug effects
;
metabolism
;
Adipogenesis
;
drug effects
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha
;
genetics
;
metabolism
;
Epimedium
;
chemistry
;
Flavonoids
;
pharmacology
;
Lipid Metabolism
;
drug effects
;
Mice
;
PPAR gamma
;
genetics
;
metabolism
;
Plant Extracts
;
pharmacology
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail