1.Impact of lithocholic acid on the osteogenic and adipogenic differentiation balance of bone marrow mesenchymal stem cells.
Cui WANG ; Jiao LI ; Lingyun LU ; Lu LIU ; Xijie YU
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):82-90
OBJECTIVE:
To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
METHODS:
Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ).
RESULTS:
Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly ( P<0.05), while the expression of cyp7b1 had no significant difference ( P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area.
CONCLUSION
After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.
Female
;
Mice
;
Animals
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
PPAR gamma/metabolism*
;
Steroid 12-alpha-Hydroxylase/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation
;
Osteogenesis
;
Mesenchymal Stem Cells
;
Bile Acids and Salts/pharmacology*
;
Bone Marrow Cells
;
Cells, Cultured
;
Azo Compounds
3.Effect and mechanism of Zexie Decoction in promoting white adipose tissue browning/brown adipose tissue activation based on GLP-1R/cAMP/PKA/CREB pathway.
Jing DING ; Jie ZHAO ; Meng-Meng WANG ; Xuan SU ; Gai GAO ; Jiang-Yan XU ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2023;48(21):5851-5862
This study investigated the mechanism of Zexie Decoction(ZXD) in promoting white adipose tissue browning/brown adipose tissue activation based on the GLP-1R/cAMP/PKA/CREB pathway. A hyperlipidemia model was induced by a western diet(WD) in mice, and the mice were divided into a control group, a model group(WD), and low-, medium-, and high-dose ZXD groups. An adipogenesis model was induced in 3T3-L1 cells in vitro, and with forskolin(FSK) used as a positive control, low-, medium-, and high-dose ZXD groups were set up. Immunohistochemistry and immunofluorescence results showed that compared with the WD group, ZXD promoted the expression of UCP1 in white and brown adipose tissues, and also upregulated UCP1, CPT1β, PPARα, and other genes in the cells. Western blot analysis showed a dose-dependent increase in the protein expression of PGC-1α, UCP1, and PPARα with ZXD treatment, indicating that ZXD could promote the white adipose tissue browning/brown adipose tissue activation. Hematoxylin-eosin(HE) staining results showed that after ZXD treatment, white and brown adipocytes were significantly reduced in size, and the mRNA expression of ATGL, HSL, MGL, and PLIN1 was significantly upregulated as compared with the results in the WD group. Oil red O staining and biochemical assays indicated that ZXD improved lipid accumulation and promoted lipolysis. Immunohistochemistry and immunofluorescence staining for p-CREB revealed that ZXD reversed the decreased expression of p-CREB caused by WD. In vitro intervention with ZXD increased the protein expression of CREB, p-CREB, and p-PKA substrate, and increased the mRNA level of CREB. ELISA detected an increase in intracellular cAMP concentration with ZXD treatment. Molecular docking analysis showed that multiple active components in Alismatis Rhizoma and Atractylodis Macrocephalae Rhizoma could form stable hydrogen bond interactions with GLP-1R. In conclusion, ZXD promotes white adipose tissue browning/brown adipose tissue activation both in vivo and in vitro, and its mechanism of action may be related to the GLP-1R/cAMP/PKA/CREB pathway.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Molecular Docking Simulation
;
PPAR alpha/metabolism*
;
Adipose Tissue, White
;
RNA, Messenger/metabolism*
4.Effects and mechanism of knocking down lncRNA H19 to inhibit lipid accumulation in human THP-1 cells-derived macrophages.
Xuemei WANG ; Yue CHE ; Jieying WANG ; Ke MEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):884-890
Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.
Humans
;
Adenosine Triphosphate
;
Cholesterol
;
NF-kappa B
;
PPAR alpha
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering/genetics*
;
THP-1 Cells
;
Macrophages/metabolism*
;
Lipid Metabolism
5.Molecular pathological mechanism of liver metabolic disorder in mice with severe spinal muscular atrophy.
Lihe LIU ; Mingrui ZHU ; Yifan WANG ; Bo WAN ; Zhi JIANG
Journal of Southern Medical University 2023;43(5):852-858
OBJECTIVE:
To explore the molecular pathological mechanism of liver metabolic disorder in severe spinal muscular atrophy (SMA).
METHODS:
The transgenic mice with type Ⅰ SMA (Smn-/- SMN20tg/2tg) and littermate control mice (Smn+/- SMN20tg/2tg) were observed for milk suckling behavior and body weight changes after birth. The mice with type Ⅰ SMA mice were given an intraperitoneal injection of 20% glucose solution or saline (15 μL/12 h), and their survival time was recorded. GO enrichment analysis was performed using the RNA-Seq data of the liver of type Ⅰ SMA and littermate control mice, and the results were verified using quantitative real-time PCR. Bisulfite sequencing was performed to examine CpG island methylation level in Fasn gene promoter region in the liver of the neonatal mice.
RESULTS:
The neonatal mice with type Ⅰ SMA showed normal milk suckling behavior but had lower body weight than the littermate control mice on the second day after birth. Intraperitoneal injection of glucose solution every 12 h significantly improved the median survival time of type Ⅰ SMA mice from 9±1.3 to 11± 1.5 days (P < 0.05). Analysis of the RNA-Seq data of the liver showed that the expression of the target genes of PPARα related to lipid metabolism and mitochondrial β oxidation were down-regulated in the liver of type Ⅰ SMA mice. Type Ⅰ SMA mice had higher methylation level of the Fasn promoter region in the liver than the littermate control mice (76.44% vs 58.67%). In primary cultures of hepatocytes from type Ⅰ SMA mice, treatment with 5-AzaC significantly up-regulated the expressions of the genes related to lipid metabolism by over 1 fold (P < 0.01).
CONCLUSION
Type Ⅰ SMA mice have liver metabolic disorder, and the down-regulation of the target genes of PPARα related to lipid and glucose metabolism due to persistent DNA methylation contributes to the progression of SMA.
Mice
;
Animals
;
PPAR alpha
;
Liver Diseases
;
Muscular Atrophy, Spinal/genetics*
;
Mice, Transgenic
;
Body Weight
;
Glucose
6.Ketogenic diet improves low temperature tolerance in mice by up-regulating PPARα in the liver and brown adipose tissue.
Chen-Han LI ; Wei ZHANG ; Pan-Pan WANG ; Peng-Fei ZHANG ; Jiong AN ; Hong-Yan YANG ; Feng GAO ; Gui-Ling WU ; Xing ZHANG
Acta Physiologica Sinica 2023;75(2):171-178
The aim of the present study was to investigate the effects of short-term ketogenic diet on the low temperature tolerance of mice and the involvement of peroxisome proliferator-activated receptor α (PPARα). C57BL/6J mice were divided into two groups: normal diet (WT+ND) group and ketogenic diet (WT+KD) group. After being fed with normal or ketogenic diet at room temperature for 2 d, the mice were exposed to 4 °C low temperature for 12 h. The changes in core temperature, blood glucose, blood pressure of mice under low temperature condition were detected, and the protein expression levels of PPARα and mitochondrial uncoupling protein 1 (UCP1) were detected by Western blot. PPARα knockout mice were divided into normal diet (PPARα-/-+ND) group and ketogenic diet (PPARα-/-+KD) group. After being fed with the normal or ketogenic diet at room temperature for 2 d, the mice were exposed to 4 °C low temperature for 12 h. The above indicators were also detected. The results showed that, at room temperature, the protein expression levels of PPARα and UCP1 in liver and brown adipose tissue of WT+KD group were significantly up-regulated, compared with those of WT+ND group. Under low temperature condition, compared with WT+ND, the core temperature and blood glucose of WT+KD group were increased, while mean arterial pressure was decreased; The ketogenic diet up-regulated PPARα protein expression in brown adipose tissue, as well as UCP1 protein expression in liver and brown adipose tissue of WT+KD group. Under low temperature condition, compared to WT+ND group, PPARα-/-+ND group exhibited decreased core temperature and down-regulated PPARα and UCP1 protein expression levels in liver, skeletal muscle, white and brown adipose tissue. Compared to the PPARα-/-+ND group, the PPARα-/-+KD group exhibited decreased core temperature and did not show any difference in the protein expression of UCP1 in liver, skeletal muscle, white and brown adipose tissue. These results suggest that the ketogenic diet promotes UCP1 expression by up-regulating PPARα, thus improving low temperature tolerance of mice. Therefore, short-term ketogenic diet can be used as a potential intervention to improve the low temperature tolerance.
Animals
;
Mice
;
Adipose Tissue, Brown/metabolism*
;
PPAR alpha/pharmacology*
;
Diet, Ketogenic
;
Uncoupling Protein 1/metabolism*
;
Blood Glucose/metabolism*
;
Temperature
;
Mice, Inbred C57BL
;
Liver
;
Adipose Tissue/metabolism*
7.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal
8.Mechanism of Triclosan in the Treatment of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology.
Chao ZUO ; Dong-Lei SUN ; Tian-He ZHAO ; Jing-Jing WANG ; Zun-Zhen ZHANG
Acta Academiae Medicinae Sinicae 2022;44(2):253-261
Objective To explore the potential targets of triclosan in the treatment of nonalcoholic fatty liver disease(NAFLD) and to provide new clues for the future research on the application of triclosan. Methods The targets of triclosan and NAFLD were obtained via network pharmacology.The protein-protein interaction network was constructed with the common targets shared by triclosan and NAFLD.The affinity of triclosan to targets was verified through molecular docking.Gene ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were carried out to analyze the key targets and the potential mechanism of action.NAFLD model was established by feeding male C57BL/6J mice with high-fat diet for 12 weeks.The mice were randomly assigned into a model group and a triclosan group [400 mg/(kg·d),gavage once a day for 8 weeks].The hematoxylin-eosin(HE) staining was used for observation of the pathological changes and oil red O staining for observation of fat deposition in mouse liver.Western blotting was employed to detect the protein level of peroxisome proliferator-activated receptor alpha(PPARα) in the liver tissue. Results Triclosan and NAFLD had 34 common targets,19 of which may be the potential targets for the treatment,including albumin(ALB),PPARα,mitogen-activated protein kinase 8(MAPK8),and fatty acid synthase.Molecular docking predicted that ALB,PPARα,and MAPK8 had good binding ability to triclosan.KEGG pathway enrichment showcased that the targets were mainly enriched in peroxisome proliferator-activated receptor signaling pathway,in which ALB and MAPK8 were not involved.Triclosan alleviated the balloon-like change and lipid droplet vacuole,decreased the lipid droplet area,and up-regulated the expression level of PPARα in mouse liver tissue. Conclusion PPARα is a key target of triclosan in the treatment of NAFLD,which may be involved in fatty acid oxidation through the peroxisome proliferator activated receptor signaling pathway.
Animals
;
Liver/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Molecular Docking Simulation
;
Network Pharmacology
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
PPAR alpha/therapeutic use*
;
Triclosan/therapeutic use*
9.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
3T3-L1 Cells
;
Activating Transcription Factor 3/pharmacology*
;
Adipocytes
;
Adipogenesis/genetics*
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
;
Cell Differentiation
;
Goats
;
Mice
;
PPAR gamma/metabolism*
10.Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage.
Chaoran XU ; Huaijun CHEN ; Shengjun ZHOU ; Chenjun SUN ; Xiaolong XIA ; Yucong PENG ; Jianfeng ZHUANG ; Xiongjie FU ; Hanhai ZENG ; Hang ZHOU ; Yang CAO ; Qian YU ; Yin LI ; Libin HU ; Guoyang ZHOU ; Feng YAN ; Gao CHEN ; Jianru LI
Neuroscience Bulletin 2021;37(10):1412-1426
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
Anilides/pharmacology*
;
Cerebral Hemorrhage/drug therapy*
;
Hematoma/drug therapy*
;
Humans
;
Macrophages
;
Microglia
;
Neuroprotection
;
PPAR gamma
;
Retinoid X Receptor alpha

Result Analysis
Print
Save
E-mail