1.Advances in neoadjuvant therapy for locally advanced resectable esophageal cancer
Xiaozheng KANG ; Ruixiang ZHANG ; Zhen WANG ; Xiankai CHEN ; Yong LI ; Jianjun QIN ; Yin LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):153-159
Neoadjuvant therapy has become the standard treatment for locally advanced resectable esophageal cancer, significantly improving long-term survival compared to surgery alone. Neoadjuvant therapy has evolved to include various strategies, such as concurrent chemoradiotherapy, chemotherapy, immunotherapy, or targeted combination therapy. This enriches clinical treatment options and provides a more personalized and scientific treatment approach for patients. This article aims to comprehensively summarize current academic research hot topics, review the rationale and evaluation measures of neoadjuvant therapy, discuss challenges in restaging methods after neoadjuvant therapy, and identify the advantages and disadvantages of various neoadjuvant therapeutic strategies.
2.The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis
Yushuang SU ; Yan LI ; Hong GAO ; Zaichun PU ; Juan CHEN ; Mengting LIU ; Yaxie HE ; Bin HE ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):230-236
Objective To systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. Methods A computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. Conclusion At present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
3.Construction of a predictive model for poorly differentiated adenocarcinoma in pulmonary nodules using CT combined with tumor markers
Jie JIANG ; Feng LIU ; Bo WANG ; Qin WANG ; Jian ZHONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):73-79
Objective To establish and internally validate a predictive model for poorly differentiated adenocarcinoma based on CT imaging and tumor marker results. Methods Patients with solid and partially solid lung nodules who underwent lung nodule surgery at the Department of Thoracic Surgery, the Affiliated Brain Hospital of Nanjing Medical University in 2023 were selected and randomly divided into a training set and a validation set at a ratio of 7:3. Patients' CT features, including average density value, maximum diameter, pleural indentation sign, and bronchial inflation sign, as well as patient tumor marker results, were collected. Based on postoperative pathological results, patients were divided into a poorly differentiated adenocarcinoma group and a non-poorly differentiated adenocarcinoma group. Univariate analysis and logistic regression analysis were performed on the training set to establish the predictive model. The receiver operating characteristic (ROC) curve was used to evaluate the model's discriminability, the calibration curve to assess the model's consistency, and the decision curve to evaluate the clinical value of the model, which was then validated in the validation set. Results A total of 299 patients were included, with 103 males and 196 females, with a median age of 57.00 (51.00, 67.25) years. There were 211 patients in the training set and 88 patients in the validation set. Multivariate analysis showed that carcinoembryonic antigen (CEA) value [OR=1.476, 95%CI (1.184, 1.983), P=0.002], cytokeratin 19 fragment antigen (CYFRA21-1) value [OR=1.388, 95%CI (1.084, 1.993), P=0.035], maximum tumor diameter [OR=6.233, 95%CI (1.069, 15.415), P=0.017], and average density [OR=1.083, 95%CI (1.020, 1.194), P=0.040] were independent risk factors for solid and partially solid lung nodules as poorly differentiated adenocarcinoma. Based on this, a predictive model was constructed with an area under the ROC curve of 0.896 [95%CI (0.810, 0.982)], a maximum Youden index corresponding cut-off value of 0.103, sensitivity of 0.750, and specificity of 0.936. Using the Bootstrap method for 1000 samplings, the calibration curve predicted probability was consistent with actual risk. Decision curve analysis indicated positive benefits across all prediction probabilities, demonstrating good clinical value. Conclusion For patients with solid and partially solid lung nodules, preoperative use of CT to measure tumor average density value and maximum diameter, combined with tumor markers CEA and CYFRA21-1 values, can effectively predict whether it is poorly differentiated adenocarcinoma, allowing for early intervention.
4.Research progress on unplanned readmissions in patients with left ventricular assist devices
Yaxie HE ; Li XIAO ; Mengshi CHEN ; Yushuang SU ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):869-874
The implantation of left ventricular assist device (LVAD) has significantly improved the quality of life for patients with end-stage heart failure. However, it is associated with the risk of complications, with unplanned readmissions gaining increasing attention. This article reviews the influencing factors, prediction methods and models, and intervention measures for unplanned readmissions in LVAD patients, aiming to provide scientific guidance for clinical practice, assist healthcare professionals in accurately assessing patients' conditions, and develop rational care plans.
5.Interpretation of the World Health Organization global report on hypertension 2023
Qin SUN ; Weifan TIAN ; Tingting LUO ; Jing YU ; Dongze LI ; Haihong ZHANG ; Rui ZENG ; Zhi WAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(02):203-208
The World Health Organization (WHO) released the “Global report on hypertension” on September 19, 2023. This report systematically summarizes the prevalence, mortality, diagnosis and treatment of hypertension in various countries, and elucidates the current situation of hypertension management, and gives a series of suggestions on how to manage hypertension, providing new thinking and inspiration for countries to optimize hypertension management. Through the summary of relevant studies and reports, this paper further reviews the present situation, early identification and management of hypertension.
6.Clustering analysis of risk factors in high-incidence areas of esophageal cancer in Yanting county
Ruiwu LUO ; Heng HUANG ; Hao CHENG ; Siyu NI ; Siyi FU ; Qinchun QIAN ; Junjie YANG ; Xinlong CHEN ; Hanyu HUANG ; Zhengdong ZONG ; Yujuan ZHAO ; Yuhe QIN ; Chengcheng HE ; Ye WU ; Hongying WEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(03):385-391
Objective To investigate the dietary patterns of rural residents in the high-incidence areas of esophageal cancer (EC), and to explore the clustering and influencing factors of risk factors associated with high-incidence characteristics. Methods A special structured questionnaire was applied to conduct a face-to-face survey on the dietary patterns of rural residents in Yanting county of Sichuan Province from July to August 2021. Univariate and multivariate logistic regression models were used to analyze the influencing factors of risk factor clustering for EC. Results There were 838 valid questionnaires in this study. A total of 90.8% of rural residents used clean water such as tap water. In the past one year, the people who ate fruits and vegetables, soybean products, onions and garlic in high frequency accounted for 69.5%, 32.8% and 74.5%, respectively; the people who ate kimchi, pickled vegetables, sauerkraut, barbecue, hot food and mildew food in low frequency accounted for 59.2%, 79.6%, 68.2%, 90.3%, 80.9% and 90.3%, respectively. The clustering of risk factors for EC was found in 73.3% of residents, and the aggregation of two risk factors was the most common mode (28.2%), among which tumor history and preserved food was the main clustering pattern (4.6%). The logistic regression model revealed that the gender, age, marital status and occupation were independent influencing factors for the risk factors clustering of EC (P<0.05). Conclusion A majority of rural residents in high-incidence areas of EC in Yanting county have good eating habits, but the clustering of some risk factors is still at a high level. Gender, age, marital status, and occupation are influencing factors of the risk factors clustering of EC.
7.Study on the difference of high frequency dielectric properties of biological tissues measured by air and packed coaxial probe.
Yangchun QIN ; Lin YANG ; Feng FU ; Meng DAI ; Liang ZHANG
Journal of Biomedical Engineering 2023;40(5):886-893
In this paper, the differences between air probe and filled probe for measuring high-frequency dielectric properties of biological tissues are investigated based on the equivalent circuit model to provide a reference for the methodology of high-frequency measurement of biological tissue dielectric properties. Two types of probes were used to measure different concentrations of NaCl solution in the frequency band of 100 MHz-2 GHz. The results showed that the accuracy and reliability of the calculated results of the air probe were lower than that of the filled probe, especially the dielectric coefficient of the measured material, and the higher the concentration of NaCl solution, the higher the error. By laminating the probe terminal, liquid intrusion could be prevented, to a certain extent, to improve the accuracy of measurement. However, as the frequency decreased, the influence of the film on the measurement increased and the measurement accuracy decreased. The results of the study show that the air probe, despite its simple dimensional design and easy calibration, differs from the conventional equivalent circuit model in actual measurements, and the model needs to be re-corrected for actual use. The filled probe matches the equivalent circuit model better, and therefore has better measurement accuracy and reliability.
Reproducibility of Results
;
Sodium Chloride
;
Calibration
8.Non-local attention and multi-task learning based lung segmentation in chest X-ray.
Liang XIONG ; Xiaolin QIN ; Xin LIU
Journal of Biomedical Engineering 2023;40(5):912-919
Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.
X-Rays
;
Algorithms
;
Diagnosis, Computer-Assisted
;
Thorax/diagnostic imaging*
;
Lung/diagnostic imaging*
;
Image Processing, Computer-Assisted
9.Applications and challenges of wearable electroencephalogram signals in depression recognition and personalized music intervention.
Xingran CUI ; Zeguang QIN ; Zhilin GAO ; Wang WAN ; Zhongze GU
Journal of Biomedical Engineering 2023;40(6):1093-1101
Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors' laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.
Humans
;
Algorithms
;
Depression/therapy*
;
Music
;
Music Therapy
;
Electroencephalography
;
Wearable Electronic Devices
10.Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network.
Qin WANG ; Hongbo YANG ; Jiahua PAN ; Yingjie TIAN ; Tao GUO ; Weilian WANG
Journal of Biomedical Engineering 2023;40(6):1152-1159
Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100-300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm's significant potential for aiding in the diagnosis of congenital heart disease.
Humans
;
Heart Sounds
;
Neural Networks, Computer
;
Algorithms
;
Heart Defects, Congenital

Result Analysis
Print
Save
E-mail