1.Regulation of Mitochondria on Platelet Apoptosis and Activation.
Ying HU ; Li-Li ZHA ; Ke-Sheng DAI
Journal of Experimental Hematology 2023;31(3):816-822
		                        		
		                        			OBJECTIVE:
		                        			To explore the regulation of mitochondria on platelet apoptosis and activation, and the relationship between platelet apoptosis and activation.
		                        		
		                        			METHODS:
		                        			Platelets were isolated from peripheral venous blood of healthy volunteers. Cyclosporin A (CsA), which has a protective effect on the function of platelet mitochondria, BAPTA, which can chelate calcium ions across membranes in platelets, and NAC, an antioxidant that reduces the level of intracellular reactive oxygen species, were selected for coincubation with washed platelets, respectively. By flow cytometry, platelet aggregator was used to detect the changes of platelet mitochondrial function and platelet activation indexes after different interventions.
		                        		
		                        			RESULTS:
		                        			H89, staurosporine, and A23187 led to platelet mitochondrial abnormalities, while CsA could effectively reverse the decline of platelet mitochondrial membrane potential caused by them. Antioxidant NAC could reverse platelet mitochondrial damage correspondingly, and completely reverse platelet shrinkage and phosphatidylserine eversion induced by H89. BAPTA, prostaglandin E1, acetylsalicylic acid and other inhibitors could not reverse the decline of platelet mitochondrial membrane potential.
		                        		
		                        			CONCLUSION
		                        			Mitochondrial function plays an important role in platelet apoptosis and activation. Abnormal mitochondrial function causes the imbalance of reduction/oxidation state in platelets, which leads to platelet apoptosis. Platelet apoptosis and activation are independent signal processes.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Blood Platelets/metabolism*
		                        			;
		                        		
		                        			Antioxidants/pharmacology*
		                        			;
		                        		
		                        			Mitochondria/physiology*
		                        			;
		                        		
		                        			Platelet Activation
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Membrane Potential, Mitochondrial
		                        			;
		                        		
		                        			Reactive Oxygen Species/pharmacology*
		                        			
		                        		
		                        	
2.The destructive role of soluble Robo4 secreted by the M1-polarized-microglia during cerebral ischemia-reperfusion in blood-brain barrier integrity.
Jin-Long HUANG ; Chen LI ; Liang-Liang YANG ; Yang GAO ; Pu-Yuan ZHAO ; Zhi-Gang YANG
Acta Physiologica Sinica 2022;74(4):513-524
		                        		
		                        			
		                        			This project was aimed to investigate the role and the underlying mechanism of microglia polarization on blood-brain barrier (BBB) during cerebral ischemia-reperfusion. After construction of the mouse model of cerebral ischemia-reperfusion, upregulated IL-6 and TNF-α in peripheral blood and increased IL-6 and iNOS in ischemia tissues were confirmed. The supernatant expression of TNF-α and IL-6, as well as IL-6, iNOS and CD86 mRNA, was significantly increased in the of Bv-2 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in vitro. For further understanding the expression pattern of RNAs, the next-generation RNA sequencing was performed and upregulation of Robo4 (roundabout guidance receptor 4) was found both in M1-polarized and OGD/R treated Bv-2 cells, which was also confirmed by RT-qPCR. Extracellular soluble Robo4 (sRobo4) protein also increased in the supernatant of M1-polarized and OGD/R treated Bv-2 cells. Treating bEND3 cells with the Robo4 recombinant protein, M1-polarized Bv-2 cell supernatant or OGD/R Bv-2 cell supernatant decreased trans-endothelial electrical resistance (TEER), suggesting the injury of BBB. In addition, Robo4 was also highly expressed in the serum of patients who experienced acute ischemia stroke and mechanical thrombectomy operation. All the results suggest that increased secretion of Robo4 by M1-polarized-microglia during cerebral ischemia-reperfusion is most likely one of the causes of BBB injury, and Robo4 may be one of the therapeutic targets for BBB functional protection.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood-Brain Barrier/metabolism*
		                        			;
		                        		
		                        			Brain Ischemia/drug therapy*
		                        			;
		                        		
		                        			Glucose/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microglia/metabolism*
		                        			;
		                        		
		                        			Oxygen/metabolism*
		                        			;
		                        		
		                        			Receptors, Cell Surface/metabolism*
		                        			;
		                        		
		                        			Reperfusion
		                        			;
		                        		
		                        			Reperfusion Injury/drug therapy*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
3.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
		                        		
		                        			
		                        			Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
		                        		
		                        		
		                        		
		                        			Angiotensin I
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Paraventricular Hypothalamic Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Peptide Fragments
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium Chloride, Dietary
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
4.Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.
Andan QIAN ; Xin WANG ; Huiru LIU ; Jiejie TAO ; Jiejie ZHOU ; Qiong YE ; Jiance LI ; Chuang YANG ; Jingliang CHENG ; Ke ZHAO ; Meihao WANG
Neuroscience Bulletin 2018;34(3):497-506
		                        		
		                        			
		                        			Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.
		                        		
		                        		
		                        		
		                        			Attention Deficit Disorder with Hyperactivity
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			Cerebellum
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Corpus Striatum
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Frontal Lobe
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			Genotype
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Image Processing, Computer-Assisted
		                        			;
		                        		
		                        			Magnetic Resonance Imaging
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Minisatellite Repeats
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Neural Pathways
		                        			;
		                        		
		                        			diagnostic imaging
		                        			;
		                        		
		                        			Oxygen
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Receptors, Dopamine D4
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rest
		                        			
		                        		
		                        	
5.New advances in renal mechanisms of high fructose-induced salt-sensitive hypertension.
Acta Physiologica Sinica 2018;70(6):581-590
		                        		
		                        			
		                        			Fructose intake has increased dramatically over the past century and the upward trend has continued until recently. Increasing evidence suggests that the excessive intake of fructose induces salt-sensitive hypertension. While the underlying mechanism is complex, the kidney likely plays a major role. This review will highlight recent advances in the renal mechanisms of fructose-induced salt-sensitive hypertension, including (pro)renin receptor-dependent activation of intrarenal renin-angiotensin system, increased nephron Na transport activity via sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, increased renal uric acid production, decreased renal nitric oxide production, and increased renal reactive oxygen species production, and suggest actions based on these mechanisms that have therapeutic implications.
		                        		
		                        		
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Fructose
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Renin-Angiotensin System
		                        			;
		                        		
		                        			Sodium Chloride, Dietary
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Sodium-Hydrogen Exchanger 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Uric Acid
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Correlation of reproductive hormone levels and seminal plasma oxidative stress with semen quality in obese males.
Rui-Yu HAN ; Jing MA ; Jing MA ; Wen-Jiao LIU ; Xin-Tao AN ; Zi-Dong ZHANG ; Shu-Song WANG
National Journal of Andrology 2018;24(5):419-424
ObjectiveTo investigate the correlation of the levels of reproductive hormones and oxidative stress in the seminal plasma with semen parameters in obese males.
METHODSBased on the body mass index (BMI), we divided 138 infertile men into three groups: normal (BMI <24 kg/m2, n = 48), overweight (24 kg/m2≤BMI<28 kg/m2, n = 47), and obesity (BMI ≥28 kg/m2, n = 43). We determined the concentrations of follicle-stimulating hormone (FSH), luteotropic hormone (LH), prolactin (PRL), testosterone (T) and estradiol (E2) in the serum by electrochemiluminescence and measured the levels of superoxide dismutase (SOD), glutathione-S-transferases (GSTs), reactive oxygen species (ROS) and malondialdehyde (MDA) in the seminal plasma by ELISA, compared the above indexes among the three groups, and analyzed their correlation with the semen volume, sperm concentration, total sperm count, and percentage of progressively motile sperm (PMS).
RESULTSThe semen volume was significantly lower in the obesity than in the normal group ([2.63 ± 0.74] vs [3.37 ± 1.00] ml, P < 0.05), and so was the percentage of PMS in the overweight and even lower in the obesity than in the normal group ([47.91 ± 12.89] and [41.27 ± 15.77] vs [54.04 ± 13.29]%, P < 0.05). Compared with the normal group, both the overweight and obesity groups showed markedly decreased levels of serum T ([4.83 ± 1.42] vs [3.71 ± 1.22] and [3.49 ± 1.12] ng/ml, P<0.05), T/LH ratio (1.53 ± 0.57 vs 1.19 ± 0.54 and 0.97 ± 0.51, P<0.05), SOD ([112.05 ± 10.54] vs [105.85 ± 6.93] and [99.33 ± 8.39] U/ml, P<0.05), and GSTs ([31.75±6.03] vs [29.54±5.78] and [29.02±4.52] U/L, P<0.05), but remarkably increased seminal plasma ROS ([549.93±82.41] vs [620.61±96.13] and [701.47±110.60] IU/ml, P<0.05) and MDA ([7.46 ± 2.13] vs [8.72 ± 1.89] and [10.47 ± 2.10] nmol/L, P<0.05). BMI was correlated positively with ROS and MDA, but negatively with the semen volume, PMS, T, T/LH, SOD and GSTs (P<0.05); LH negatively with sperm concentration, total sperm count and GSTs (P<0.05); PRL negatively GSTs (P<0.05); E2 positively with SOD (P<0.05); T positively with SOD (P<0.05) but negatively with MDA (P<0.05); T/LH positively with PMS and SOD (P<0.05) but negatively with ROS and MDA (P<0.05); SOD positively with semen volume, PMS and GSTs (P<0.05) but negatively with ROS and MDA (P<0.05); GSTs negatively with sperm concentration; total sperm count and MDA (P<0.05); ROS positively with MDA (P<0.01) but negatively with PMS (P<0.05); and MDA negatively with semen volume (P<0.05). Multivariate logistic regression analysis showed that the independent factors influencing the semen volume were BMI and GSTs, those influencing the total sperm count were BMI and T, and those influencing PMS were BMI and MDA.
CONCLUSIONSIncreased BMI induces changes in the levels of male reproductive hormones and seminal plasma oxidative stress and affects semen quality, which may be associated with male infertility.
Body Mass Index ; Estradiol ; blood ; Follicle Stimulating Hormone ; blood ; Humans ; Infertility, Male ; blood ; classification ; metabolism ; Luteinizing Hormone ; blood ; Male ; Malondialdehyde ; analysis ; Obesity ; blood ; metabolism ; Oxidative Stress ; Prolactin ; blood ; Reactive Oxygen Species ; analysis ; Reproduction ; Semen ; metabolism ; Semen Analysis ; Sperm Count ; Testosterone ; blood
7.Cerebral Blood Volume Magnetic Resonance Imaging.
Brain & Neurorehabilitation 2018;11(2):e18-
		                        		
		                        			
		                        			Cerebral blood volume (CBV) is a hemodynamic correlate of oxygen metabolism and changes due to neuronal activity. CBV alteration may precede other hemodynamic correlates and provide an early indication of hemodynamic impairment. CBV can be easily quantified using magnetic resonance imaging (MRI); moreover, CBV MRI has a strong point of high resolution compared to other neuroimaging modalities. The early and accurate assessments of cerebral metabolism and the brain map with the high resolution of CBV MRI enable advanced neurorehabilitation examinations in a neuroimaging study.
		                        		
		                        		
		                        		
		                        			Blood Volume*
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Hemodynamics
		                        			;
		                        		
		                        			Magnetic Resonance Imaging*
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			Neuroimaging
		                        			;
		                        		
		                        			Neurological Rehabilitation
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			Oxygen
		                        			
		                        		
		                        	
8.Changes in blood oxygen metabolism indices and their clinical significance in children with septic shock.
Chinese Journal of Contemporary Pediatrics 2017;19(10):1124-1128
		                        		
		                        			
		                        			The key to the treatment of septic shock is to provide adequate oxygen supply and improve tissue perfusion. Lactate and central venous oxygen saturation (ScvO) are commonly used as the indices of oxygen metabolism, but tissue hypoxia may still exist even when lactate and ScvOare within the normal range. Arteriovenous difference in carbon dioxide partial pressure (COgap) can accurately reflect oxygen delivery when ScvOis in the normal range. This article reviews the advantages and shortages of lactate, lactate clearance rate, ScvO, and COgap in evaluating tissue hypoxia, in order to provide a reference for treatment and severity evaluation of septic shock.
		                        		
		                        		
		                        		
		                        			Carbon Dioxide
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lactic Acid
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Metabolic Clearance Rate
		                        			;
		                        		
		                        			Oxygen
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Shock, Septic
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.
Yue-Hua JIANG ; Jin-Hao GUO ; Sai WU ; Chuan-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):606-614
		                        		
		                        			
		                        			Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg·d) for 6 weeks, using valsartan (13.5 mg·kg·d) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 mol·L Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65.
		                        		
		                        		
		                        		
		                        			Angiotensin II
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antihypertensive Agents
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Endothelium, Vascular
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type III
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Inbred SHR
		                        			;
		                        		
		                        			Rats, Inbred WKY
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tribulus
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
10.The Effect of Circuit Training and Workplace Improvement Program on the Prevention of Metabolic Syndrome and the Improvement of Physical Function in Office Workers.
Dong Hyun YOON ; Han Sol SONG ; Su Seung HWANG ; Jun Seok SON ; Dae Young KIM ; Wook SONG
Korean Journal of Health Promotion 2016;16(2):134-143
		                        		
		                        			
		                        			BACKGROUND: Physical inactivity and reduced energy expenditure lead to increase in obesity among office workers. In this study, we investigated how 10 weeks of high intensity circuit training and working environment improvement can change body composition, physical strength and markers of metabolic syndrome. METHODS: A total of 83 employees at risk for metabolic syndrome participated in 10 weeks program of one-hour circuit training (30 minutes twice weekly) and workplace improvement program, which consisted of dynamic stretching twice daily for all weekdays. Body composition, anthropometry, blood test, muscle strength/endurance and cardiopulmonary function of participants were assessed at the baseline and after 10 weeks. RESULTS: At the end of 10 weeks, significant increases in levels of body composition, serum lipids, muscle strength and cardiopulmonary were observed in metabolic syndrome risk factor group. In body composition, significant improvements of body weight, body mass index, lean body mass, %body fat, visceral adipose tissue, waist and hip circumference and systolic blood pressure, diastolic blood pressure were observed in metabolic syndrome risk factor group. In lipids, hemoglobin A1c and high density lipoprotein were increased significantly in metabolic syndrome risk factor group. In muscle strength and endurance, significant increases were found. Also, there was a significant difference in cardiovascular function of maximal oxygen uptake and total running time among the groups. CONCLUSIONS: These intensive 10 weeks of high intensity circuit training and workplace improvement program were effective in improving body composition, muscle strength/improvement and cardiopulmonary function. Therefore, based on this study result, workplace improvement programs might be more developed and applied for high-risk employees to improve their metabolic syndrome.
		                        		
		                        		
		                        		
		                        			Adipose Tissue
		                        			;
		                        		
		                        			Anthropometry
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Body Composition
		                        			;
		                        		
		                        			Body Mass Index
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Circuit-Based Exercise*
		                        			;
		                        		
		                        			Energy Metabolism
		                        			;
		                        		
		                        			Hematologic Tests
		                        			;
		                        		
		                        			Hip
		                        			;
		                        		
		                        			Intra-Abdominal Fat
		                        			;
		                        		
		                        			Lipoproteins
		                        			;
		                        		
		                        			Metabolic Syndrome X
		                        			;
		                        		
		                        			Muscle Strength
		                        			;
		                        		
		                        			Muscle Stretching Exercises
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			Occupational Health
		                        			;
		                        		
		                        			Oxygen
		                        			;
		                        		
		                        			Resistance Training
		                        			;
		                        		
		                        			Risk Factors
		                        			;
		                        		
		                        			Running
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail