1.Efficient synthesis of L-methionine by engineering the one carbon module of Escherichia coli.
Bo ZHANG ; Ying WANG ; Kun NIU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(8):3302-3317
L-methionine, also known as L-aminomethane, is one of the eight essential amino acids required by the human body and has important applications in the fields of feed, medicine, and food. In this study, an L-methionine high-yielding strain was constructed using a modular metabolic engineering strategy based on the M2 strain (Escherichia coli W3110 ΔIJAHFEBC/PAM) previously constructed in our laboratory. Firstly, the production of one-carbon module methyl donors was enhanced by overexpression of methylenetetrahydrofolate reductase (methylenetetrahydrofolate reductase, MetF) and screening of hydroxymethyltransferase (GlyA) from different sources, optimizing the one-carbon module. Subsequently, cysteamine lyase (hydroxymethyltransferase, MalY) and cysteine internal transporter gene (fliY) were overexpressed to improve the supply of L-homocysteine and L-cysteine, two precursors of the one-carbon module. The production of L-methionine in shake flask fermentation was increased from 2.8 g/L to 4.05 g/L, and up to 18.26 g/L in a 5 L fermenter. The results indicate that the one carbon module has a significant impact on the biosynthesis of L-methionine, and efficient biosynthesis of L-methionine can be achieved through optimizing the one carbon module. This study may facilitate further improvement of microbial fermentation production of L-methionine.
Humans
;
Methionine
;
Methylenetetrahydrofolate Reductase (NADPH2)
;
Carbon
;
Cysteine
;
Escherichia coli/genetics*
;
Hydroxymethyl and Formyl Transferases
;
Carrier Proteins
;
Escherichia coli Proteins
2.Hyperprolinemia type Ⅰ caused by PRODH gene variation: 2 cases report and literature review.
Zhen Hua XIE ; Xian LI ; Meng Jun XIAO ; Jing LIU ; Qiang ZHANG ; Zhen Kun ZHANG ; Yan Ling YANG ; Hai Jun WANG ; Yong Xing CHEN ; Yao Dong ZHANG ; Dong Xiao LI
Chinese Journal of Pediatrics 2023;61(10):935-937
3.Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice.
Shuang WU ; Qiubing CHEN ; Yalan WANG ; Hao YIN ; Yuan WEI
Journal of Zhejiang University. Medical sciences 2023;52(3):306-317
OBJECTIVES:
To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.
METHODS:
siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.
RESULTS:
Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).
CONCLUSIONS
The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Animals
;
Female
;
Mice
;
Antioxidants/metabolism*
;
Cholesterol/metabolism*
;
Ethanol/pharmacology*
;
Glutathione/pharmacology*
;
Inflammation
;
Lipids/pharmacology*
;
Liver
;
Malondialdehyde/pharmacology*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Superoxide Dismutase
;
Triglycerides/metabolism*
;
Cytochrome P-450 CYP2E1/metabolism*
5.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
6.Analysis of the association of CYP450 gene polymorphisms with ischemic stroke.
Lin QI ; Yongfang LIU ; Meng QI ; Yingjuan PENG ; Guangming SUN ; Ying YUE
Chinese Journal of Medical Genetics 2023;40(4):500-504
OBJECTIVE:
To assess the association of cytochrome P450 (CYP450) gene polymorphisms with the occurrence of ischemic stroke (IS).
METHODS:
From January 2020 to August 2022, 390 IS patients treated at the Zhengzhou Seventh People's Hospital were enrolled as the study group, and 410 healthy individuals undergoing physical examination during the same period were enrolled as the control group. Clinical data of all subjects were collected, which included age, sex, body mass index (BMI), smoking history and results of laboratory tests. Chi-square test and independent sample t test were used for comparing the clinical data. Multivariate logistic regression analysis was used to analyze the non-hereditary independent risk factors for IS. Fasting blood samples of the subjects were collected, and the genotypes of rs4244285, rs4986893, rs12248560 of the CYP2C19 gene and rs776746 of the CYP3A5 gene were determined by Sanger sequencing. The frequency of each genotype was calculated by using SNPStats online software. The association between the genotype and IS under the dominant, recessive and additive models was analyzed.
RESULTS:
The levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), apolipoprotein B (Apo-B) and homocysteine (Hcy) of the case group were significantly higher than those of the control group, whilst the levels of high density lipoprotein (HDL-C) and Apo-A1 (APO-A1) were significantly lower (P < 0.05). Multivariate Logistic regression analysis showed that TC (95%CI = 1.13-1.92, P = 0.02), LD-C (95%CI = 1.03-2.25, P = 0.03), Apo-A1 (95%CI = 1.05-2.08, P = 0.04), Apo-B (95%CI = 1.7-4.22, P < 0.01) and Hcy (95%CI = 1.12-1.83, P = 0.04) were non-genetic independent risk factors for the occurrence of IS. Analysis of the association between the genetic polymorphisms and the risk of IS showed that the AA genotype at rs4244285 of the CYP2C19 gene, the AG genotype and A allele at rs4986893 of the CYP2C19 gene, and the GG genotype and G allele at rs776746 of the CYP3A5 gene were significantly associated with IS. Under the recessive/additive model, dominant model and dominant/additive model, polymorphisms of the rs4244285, rs4986893 and rs776746 loci were also significantly associated with the IS.
CONCLUSION
TC, LDL-C, Apo-A1, Apo-B and Hcy can all affect the occurrence of IS, and CYP2C19 and CYP3A5 gene polymorphisms are closely associated with the IS. Above finding has confirmed that the CYP450 gene polymorphisms can increase the risk of IS, which may provide a reference for the clinical diagnosis.
Humans
;
Cytochrome P-450 CYP3A/genetics*
;
Cytochrome P-450 CYP2C19/genetics*
;
Ischemic Stroke
;
Cholesterol, LDL/genetics*
;
Polymorphism, Single Nucleotide
;
Genotype
;
Apolipoproteins B/genetics*
;
Gene Frequency
7.Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging.
Peng DENG ; Insoon CHANG ; Jiongke WANG ; Amr A BADRELDIN ; Xiyao LI ; Bo YU ; Cun-Yu WANG
International Journal of Oral Science 2022;14(1):24-24
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Aging
;
Cell Differentiation
;
Facial Bones/physiology*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis
;
Osteoporosis
8.Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks.
Zhong-Rui LI ; Meng-Zhen GU ; Xiao XU ; Jing-Han ZHANG ; Hai-Li ZHANG ; Chao HAN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):241-257
Lysine specific demethylase 1 (LSD1), a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9, has become a potential therapeutic target for cancer therapy. LSD1 mediates many cellular signaling pathways and regulates cancer cell proliferation, invasion, migration, and differentiation. Recent research has focused on the exploration of its pharmacological inhibitors. Natural products are a major source of compounds with abundant scaffold diversity and structural complexity, which have made a major contribution to drug discovery, particularly anticancer agents. In this review, we briefly highlight recent advances in natural LSD1 inhibitors over the past decade. We present a comprehensive review on their discovery and identification process, natural plant sources, chemical structures, anticancer effects, and structure-activity relationships, and finally provide our perspective on the development of novel natural LSD1 inhibitors for cancer therapy.
Antineoplastic Agents/therapeutic use*
;
Enzyme Inhibitors/therapeutic use*
;
Histone Demethylases/metabolism*
;
Humans
;
Lysine/therapeutic use*
;
Neoplasms/drug therapy*
9.Do methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 polymorphisms modify changes in intelligence of school-age children in areas of endemic fluorosis?
Zichen FENG ; Ning AN ; Fangfang YU ; Jun MA ; Na LI ; Yuhui DU ; Meng GUO ; Kaihong XU ; Xiangbo HOU ; Zhiyuan LI ; Guoyu ZHOU ; Yue BA
Chinese Medical Journal 2022;135(15):1846-1854
BACKGROUND:
Excessive exposure to fluoride can reduce intelligence. Methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 ( MTHFD1 ) polymorphisms have important roles in neurodevelopment. However, the association of MTHFD1 polymorphisms with children's intelligence changes in endemic fluorosis areas has been rarely explored.
METHODS:
A cross-sectional study was conducted in four randomly selected primary schools in Tongxu County, Henan Province, from April to May in 2017. A total of 694 children aged 8 to 12 years were included in the study with the recruitment by the cluster sampling method. Urinary fluoride (UF) and urinary creatinine were separately determined using the fluoride ion-selective electrode and creatinine assay kit. Children were classified as the high fluoride group and control group according to the median of urinary creatinine-adjusted urinary fluoride (UF Cr ) level. Four loci of MTHFD1 were genotyped, and the Combined Raven's Test was used to evaluate children's intelligence quotient (IQ). Generalized linear model and multinomial logistic regression model were performed to analyze the associations between children's UF Cr level, MTHFD1 polymorphisms, and intelligence. The general linear model was used to explore the effects of gene-environment and gene-gene interaction on intelligence.
RESULTS:
In the high fluoride group, children's IQ scores decreased by 2.502 when the UF Cr level increased by 1.0 mg/L (β = -2.502, 95% confidence interval [CI]:-4.411, -0.593), and the possibility for having "excellent" intelligence decreased by 46.3% (odds ratio = 0.537, 95% CI: 0.290, 0.994). Children with the GG genotype showed increased IQ scores than those with the AA genotype of rs11627387 locus in the high fluoride group ( P < 0.05). Interactions between fluoride exposure and MTHFD1 polymorphisms on intelligence were observed (Pinteraction < 0.05).
CONCLUSION
Our findings suggest that excessive fluoride exposure may have adverse effects on children's intelligence, and changes in children's intelligence may be associated with the interaction between fluoride and MTHFD1 polymorphisms.
Child
;
Creatinine
;
Cross-Sectional Studies
;
Fluorides/urine*
;
Formate-Tetrahydrofolate Ligase
;
Humans
;
Intelligence/genetics*
;
Methylenetetrahydrofolate Dehydrogenase (NADP)
;
Methylenetetrahydrofolate Reductase (NADPH2)
10.Extracts of Poria cocos polysaccharides improves alcoholic liver disease in mice via CYP2E1 and NF-κB inflammatory pathways.
Yue-Hang JIANG ; Yue ZHANG ; Yan-Yan WANG ; Wen-Xin ZHANG ; Meng-Wen WANG ; Chao-Qun LIU ; Dai-Yin PENG ; Nian-Jun YU ; Lei WANG ; Wei-Dong CHEN
China Journal of Chinese Materia Medica 2022;47(1):134-140
The present study investigated the effect of extract of Poria cocos polysaccharides(PCP) on cytochrome P450 2 E1(CYP2 E1) and nuclear factor κB(NF-κB) inflammatory signaling pathways in alcoholic liver disease(ALD) mice and explored its protective effect and mechanism. Sixty male C57 BL/6 N mice of SPF grade were randomly divided into a control group, a model group, a positive drug group(bifendate, 200 mg·kg~(-1)), and high-(200 mg·kg~(-1)) and low-dose(50 mg·kg~(-1)) PCP groups. Gao-binge mo-del was induced and the mice in each group were treated correspondingly. Liver morphological and pathological changes were observed and organ index was calculated. Serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were detected. Malondialdehyde(MDA) and superoxide dismutase(SOD) in liver tissues were detected by assay kits. The levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The activation of macrophages was observed by immunofluorescence staining and protein expression of CYP2 E1, Toll-like receptor 4(TLR4), NF-κB p65, and phosphorylated NF-κB p65(p-NF-κB p65) were analyzed by Western blot. The ALD model was properly induced. Compared with the model group, the PCP groups significantly improved the pathological injury of liver tissues. Immunofluorescence staining revealed that compared with the model group, the groups with drug intervention showed decreased macrophages in liver tissues. Additionally, the PCP groups showed reduced ALT, AST, MDA, IL-6, and TNF-α(P<0.05), and potentiated activity of SOD(P<0.01). PCP extract has the protective effect against alcoholic liver injury in mice, and the underlying mechanism may be related to the regulation of the expression of CYP2 E1 and inhibition of TLR4/NF-κB inflammatory signaling pathway to reduce oxidative stress and inflammatory injury, thereby inhibiting the development of ALD.
Animals
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Liver
;
Liver Diseases, Alcoholic/pathology*
;
Male
;
Mice
;
NF-kappa B/metabolism*
;
Plant Extracts/pharmacology*
;
Polysaccharides/pharmacology*
;
Wolfiporia

Result Analysis
Print
Save
E-mail