1.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
2.Analysis of the association of CYP450 gene polymorphisms with ischemic stroke.
Lin QI ; Yongfang LIU ; Meng QI ; Yingjuan PENG ; Guangming SUN ; Ying YUE
Chinese Journal of Medical Genetics 2023;40(4):500-504
OBJECTIVE:
To assess the association of cytochrome P450 (CYP450) gene polymorphisms with the occurrence of ischemic stroke (IS).
METHODS:
From January 2020 to August 2022, 390 IS patients treated at the Zhengzhou Seventh People's Hospital were enrolled as the study group, and 410 healthy individuals undergoing physical examination during the same period were enrolled as the control group. Clinical data of all subjects were collected, which included age, sex, body mass index (BMI), smoking history and results of laboratory tests. Chi-square test and independent sample t test were used for comparing the clinical data. Multivariate logistic regression analysis was used to analyze the non-hereditary independent risk factors for IS. Fasting blood samples of the subjects were collected, and the genotypes of rs4244285, rs4986893, rs12248560 of the CYP2C19 gene and rs776746 of the CYP3A5 gene were determined by Sanger sequencing. The frequency of each genotype was calculated by using SNPStats online software. The association between the genotype and IS under the dominant, recessive and additive models was analyzed.
RESULTS:
The levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), apolipoprotein B (Apo-B) and homocysteine (Hcy) of the case group were significantly higher than those of the control group, whilst the levels of high density lipoprotein (HDL-C) and Apo-A1 (APO-A1) were significantly lower (P < 0.05). Multivariate Logistic regression analysis showed that TC (95%CI = 1.13-1.92, P = 0.02), LD-C (95%CI = 1.03-2.25, P = 0.03), Apo-A1 (95%CI = 1.05-2.08, P = 0.04), Apo-B (95%CI = 1.7-4.22, P < 0.01) and Hcy (95%CI = 1.12-1.83, P = 0.04) were non-genetic independent risk factors for the occurrence of IS. Analysis of the association between the genetic polymorphisms and the risk of IS showed that the AA genotype at rs4244285 of the CYP2C19 gene, the AG genotype and A allele at rs4986893 of the CYP2C19 gene, and the GG genotype and G allele at rs776746 of the CYP3A5 gene were significantly associated with IS. Under the recessive/additive model, dominant model and dominant/additive model, polymorphisms of the rs4244285, rs4986893 and rs776746 loci were also significantly associated with the IS.
CONCLUSION
TC, LDL-C, Apo-A1, Apo-B and Hcy can all affect the occurrence of IS, and CYP2C19 and CYP3A5 gene polymorphisms are closely associated with the IS. Above finding has confirmed that the CYP450 gene polymorphisms can increase the risk of IS, which may provide a reference for the clinical diagnosis.
Humans
;
Cytochrome P-450 CYP3A/genetics*
;
Cytochrome P-450 CYP2C19/genetics*
;
Ischemic Stroke
;
Cholesterol, LDL/genetics*
;
Polymorphism, Single Nucleotide
;
Genotype
;
Apolipoproteins B/genetics*
;
Gene Frequency
3.Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice.
Shuang WU ; Qiubing CHEN ; Yalan WANG ; Hao YIN ; Yuan WEI
Journal of Zhejiang University. Medical sciences 2023;52(3):306-317
OBJECTIVES:
To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.
METHODS:
siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.
RESULTS:
Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).
CONCLUSIONS
The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Animals
;
Female
;
Mice
;
Antioxidants/metabolism*
;
Cholesterol/metabolism*
;
Ethanol/pharmacology*
;
Glutathione/pharmacology*
;
Inflammation
;
Lipids/pharmacology*
;
Liver
;
Malondialdehyde/pharmacology*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Superoxide Dismutase
;
Triglycerides/metabolism*
;
Cytochrome P-450 CYP2E1/metabolism*
4.Extracts of Poria cocos polysaccharides improves alcoholic liver disease in mice via CYP2E1 and NF-κB inflammatory pathways.
Yue-Hang JIANG ; Yue ZHANG ; Yan-Yan WANG ; Wen-Xin ZHANG ; Meng-Wen WANG ; Chao-Qun LIU ; Dai-Yin PENG ; Nian-Jun YU ; Lei WANG ; Wei-Dong CHEN
China Journal of Chinese Materia Medica 2022;47(1):134-140
The present study investigated the effect of extract of Poria cocos polysaccharides(PCP) on cytochrome P450 2 E1(CYP2 E1) and nuclear factor κB(NF-κB) inflammatory signaling pathways in alcoholic liver disease(ALD) mice and explored its protective effect and mechanism. Sixty male C57 BL/6 N mice of SPF grade were randomly divided into a control group, a model group, a positive drug group(bifendate, 200 mg·kg~(-1)), and high-(200 mg·kg~(-1)) and low-dose(50 mg·kg~(-1)) PCP groups. Gao-binge mo-del was induced and the mice in each group were treated correspondingly. Liver morphological and pathological changes were observed and organ index was calculated. Serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were detected. Malondialdehyde(MDA) and superoxide dismutase(SOD) in liver tissues were detected by assay kits. The levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The activation of macrophages was observed by immunofluorescence staining and protein expression of CYP2 E1, Toll-like receptor 4(TLR4), NF-κB p65, and phosphorylated NF-κB p65(p-NF-κB p65) were analyzed by Western blot. The ALD model was properly induced. Compared with the model group, the PCP groups significantly improved the pathological injury of liver tissues. Immunofluorescence staining revealed that compared with the model group, the groups with drug intervention showed decreased macrophages in liver tissues. Additionally, the PCP groups showed reduced ALT, AST, MDA, IL-6, and TNF-α(P<0.05), and potentiated activity of SOD(P<0.01). PCP extract has the protective effect against alcoholic liver injury in mice, and the underlying mechanism may be related to the regulation of the expression of CYP2 E1 and inhibition of TLR4/NF-κB inflammatory signaling pathway to reduce oxidative stress and inflammatory injury, thereby inhibiting the development of ALD.
Animals
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Liver
;
Liver Diseases, Alcoholic/pathology*
;
Male
;
Mice
;
NF-kappa B/metabolism*
;
Plant Extracts/pharmacology*
;
Polysaccharides/pharmacology*
;
Wolfiporia
5.Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging.
Peng DENG ; Insoon CHANG ; Jiongke WANG ; Amr A BADRELDIN ; Xiyao LI ; Bo YU ; Cun-Yu WANG
International Journal of Oral Science 2022;14(1):24-24
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Aging
;
Cell Differentiation
;
Facial Bones/physiology*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis
;
Osteoporosis
6.Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks.
Zhong-Rui LI ; Meng-Zhen GU ; Xiao XU ; Jing-Han ZHANG ; Hai-Li ZHANG ; Chao HAN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):241-257
Lysine specific demethylase 1 (LSD1), a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9, has become a potential therapeutic target for cancer therapy. LSD1 mediates many cellular signaling pathways and regulates cancer cell proliferation, invasion, migration, and differentiation. Recent research has focused on the exploration of its pharmacological inhibitors. Natural products are a major source of compounds with abundant scaffold diversity and structural complexity, which have made a major contribution to drug discovery, particularly anticancer agents. In this review, we briefly highlight recent advances in natural LSD1 inhibitors over the past decade. We present a comprehensive review on their discovery and identification process, natural plant sources, chemical structures, anticancer effects, and structure-activity relationships, and finally provide our perspective on the development of novel natural LSD1 inhibitors for cancer therapy.
Antineoplastic Agents/therapeutic use*
;
Enzyme Inhibitors/therapeutic use*
;
Histone Demethylases/metabolism*
;
Humans
;
Lysine/therapeutic use*
;
Neoplasms/drug therapy*
7.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*
8.Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1.
Yu JIN ; Zhen LIU ; Zhenxia LI ; Hairui LI ; Cheng ZHU ; Ruomei LI ; Ting ZHOU ; Bing FANG
International Journal of Oral Science 2022;14(1):34-34
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Cartilage, Articular/pathology*
;
Chondrocytes/metabolism*
;
Down-Regulation
;
Epigenesis, Genetic
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism*
;
Osteoarthritis/pathology*
;
RNA, Small Interfering/pharmacology*
9.Mechanism of Puerariae Lobatae Radix against lung cancer by inhibiting histone demethylase LSD1.
Ting-Ting QIN ; Jin-Lian MA ; Yong YUAN ; Kun DU ; Jin-Xin MIAO ; Xiao-Fang LI ; Hua-Hui ZENG ; Xiang-Xiang WU ; Zhong-Hua LI
China Journal of Chinese Materia Medica 2022;47(20):5574-5583
Histone lysine-specific demethylase 1(LSD1) has become a promising molecular target for lung cancer therapy. Upon the screening platform for LSD1 activity, some Chinese herbal extracts were screened for LSD1 activity inhibition, and the underlying mechanism was preliminarily investigated at both molecular and cellular levels. The results of LSD1 inhibition showed that Puerariae Lobatae Radix extract can effectively reduce LSD1 expression to elevate the expression of H3 K4 me2 and H3 K9 me2 substrates in H1975 and H1299 cells. Furthermore, Puerariae Lobatae Radix was evaluated for its anti-lung cancer activity. It had a potent inhibitory ability against the proliferation and colony formation of both H1975 and H1299 cells. Flow cytometry and DAPI staining assays indicated that Puerariae Lobatae Radix can induce the apoptosis of lung cancer cells. In addition, it can significantly suppress the migration and reverse the epithelial-mesenchymal transition(EMT) process of lung cancer cells by activating E-cadherin and suppressing the expression of N-cadherin, slug and vimentin. To sum up, Puerariae Lobatae Radix displayed a robust inhibitory activity against lung cancer, and the mechanism may be related to the down-regulation of LSD1 expression to induce the cell apoptosis and suppress the cell migration and EMT process. These findings will provide new insights into the action of Puerariae Lobatae Radix as an anti-lung cancer agent and offer new ideas for the study on the anti-cancer action of Chinese medicine based on the epigenetic modification.
Pueraria/chemistry*
;
Histone Demethylases/analysis*
;
Plant Roots/chemistry*
;
Epithelial-Mesenchymal Transition
;
Neoplasms
10.Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats.
Chang YANG ; Jing LI ; Jia SUN ; Ding-Yan LU ; Shuai-Shuai CHEN ; Yong-Jun LI ; Yong-Lin WANG ; Ting LIU
China Journal of Chinese Materia Medica 2022;47(21):5936-5943
Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.
Rats
;
Animals
;
Cytochrome P-450 CYP1A2/metabolism*
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Rats, Sprague-Dawley
;
Cytochrome P-450 Enzyme System/metabolism*
;
Microsomes, Liver
;
Liver
;
Cytochrome P-450 CYP3A/metabolism*

Result Analysis
Print
Save
E-mail