1.The Dynamics of Dopamine D2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats.
Kuncheng LIU ; Miaomiao SONG ; Shasha GAO ; Lu YAO ; Li ZHANG ; Jie FENG ; Ling WANG ; Rui GAO ; Yong WANG
Neuroscience Bulletin 2023;39(9):1411-1425
		                        		
		                        			
		                        			L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Levodopa/toxicity*
		                        			;
		                        		
		                        			Dopamine
		                        			;
		                        		
		                        			Parkinsonian Disorders/drug therapy*
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			Dyskinesia, Drug-Induced
		                        			;
		                        		
		                        			Corpus Striatum/metabolism*
		                        			;
		                        		
		                        			Neurons/metabolism*
		                        			;
		                        		
		                        			Receptors, Dopamine D2/metabolism*
		                        			;
		                        		
		                        			Antiparkinson Agents/toxicity*
		                        			
		                        		
		                        	
2.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
		                        		
		                        			
		                        			Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
		                        		
		                        		
		                        		
		                        			Adrenergic Agents
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apomorphine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dopamine Agonists
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Functional Laterality
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Medial Forebrain Bundle
		                        			;
		                        		
		                        			injuries
		                        			;
		                        		
		                        			Motor Activity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Parkinson Disease, Secondary
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Subthalamic Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Tyrosine 3-Monooxygenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Vesicular Glutamate Transport Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
		                        		
		                        			
		                        			The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Antiparkinson Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type I
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Paeonia
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Parkinsonian Disorders
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Substantia Nigra
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Tyrosine 3-Monooxygenase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease.
Si-Yue LI ; Ya-Li WANG ; Wen-Wen LIU ; Dong-Jun LYU ; Fen WANG ; Cheng-Jie MAO ; Ya-Ping YANG ; Li-Fang HU ; Chun-Feng LIU ;
Chinese Medical Journal 2017;130(9):1085-1092
BACKGROUNDParkinson's disease (PD) patients with long-term levodopa (L-DOPA) treatment are suffering from severe circadian dysfunction. However, it is hard to distinguish that the circadian disturbance in patients is due to the disease progression itself, or is affected by L-DOPA replacement therapy. This study was to investigate the role of L-DOPA on the circadian dysfunction in a rat model of PD.
METHODSThe rat model of PD was constructed by a bilateral striatal injection with 6-hydroxydopamine (6-OHDA), followed by administration of saline or 25 mg/kg L-DOPA for 21 consecutive days. Rotarod test, footprint test, and open-field test were carried out to evaluate the motor function. Striatum, suprachiasmatic nucleus (SCN), liver, and plasma were collected at 6:00, 12:00, 18:00, and 24:00. Quantitative real-time polymerase chain reaction was used to examine the expression of clock genes. Enzyme-linked immunosorbent assay was used to determine the secretion level of cortisol and melatonin. High-performance liquid chromatography was used to measure the neurotransmitters. Analysis of variance was used for data analysis.
RESULTSL-DOPA alleviated the motor deficits induced by 6-OHDA lesions in the footprint and open-field test ( P < 0.01, P < 0.001, respectively). After L-DOPA treatment, Bmal1 decreased in the SCN compared with 6-OHDA group at 12:00 ( P < 0.01) and 24:00 ( P < 0.001). In the striatum, the expression of Bmal1, Rorα was lower than that in the 6-OHDA group at 18:00 (P < 0.05) and L-DOPA seemed to delay the peak of Per2 to 24:00. In liver, L-DOPA did not affect the rhythmicity and expression of these clock genes (P > 0.05). In addition, the cortisol secretion was increased (P > 0.05), but melatonin was further inhibited after L-DOPA treatment at 6:00 (P < 0.01).
CONCLUSIONSIn the circadian system of advanced PD rat models, circadian dysfunction is not only contributed by the degeneration of the disease itself but also long-term L-DOPA therapy may further aggravate it.
Animals ; Blotting, Western ; Body Weight ; drug effects ; Circadian Rhythm ; drug effects ; Enzyme-Linked Immunosorbent Assay ; Fluorescent Antibody Technique ; Levodopa ; therapeutic use ; Male ; Oxidopamine ; toxicity ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction
5.Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2.
Susu MAO ; Qi SUN ; Hui XIAO ; Chenyu ZHANG ; Liang LI
Protein & Cell 2015;6(7):529-540
		                        		
		                        			
		                        			MicroRNAs (miRNAs) are a class of noncoding RNAs that regulates target gene expression at posttranscriptional level, leading to further biological functions. We have demonstrated that microvesicles (MVs) can deliver miRNAs into target cells as a novel way of intercellular communication. It is reported that in central nervous system, glial cells release MVs, which modulate neuronal function in normal condition. To elucidate the potential role of glial MVs in disease, we evaluated the effects of secreted astrocytic MVs on stress condition. Our results demonstrated that after Lipopolysaccharide (LPS) stimulation, astrocytes released shedding vesicles (SVs) that enhanced vulnerability of dopaminergic neurons to neurotoxin. Further investigation showed that increased astrocytic miR-34a in SVs was involved in this progress via targeting anti-apoptotic protein Bcl-2 in dopaminergic neurons. We also found that inhibition of astrocytic miR-34a after LPS stimulation can postpone dopaminergic neuron loss under neurotoxin stress. These data revealed a novel mechanism underlying astrocyte-neuron interaction in disease.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Astrocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell-Derived Microparticles
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dopaminergic Neurons
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neurotoxins
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Stress, Physiological
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
6.A Rat Model of Striatonigral Degeneration Generated by Simultaneous Injection of 6-Hydroxydopamine into the Medial Forebrain Bundle and Quinolinic Acid into the Striatum.
Hyung Ho YOON ; Yong Hwan KIM ; Eun Sil SHIN ; Sang Ryong JEON
Journal of Korean Medical Science 2014;29(11):1555-1561
		                        		
		                        			
		                        			A double toxin-double lesion strategy is well-known to generate a rat model of striatonigral degeneration (SND) such as multiple system atrophy-parkinsonian type. However, with this model it is difficult to distinguish SND from Parkinson's disease (PD). In this study, we propose a new rat model of SND, which is generated by simultaneous injection of 6-hydroxydopamine into the medial forebrain bundle and quinolinic acid into the striatum. Stepping tests performed 30 min after intraperitoneal L-dopa administration at 6 weeks post-surgery revealed an L-dopa response in the PD group but not the SND group. Apomorphine-induced rotation tests revealed no rotational bias in the SND group, which persisted for 2 months, but contralateral rotations in the PD group. MicroPET scans revealed glucose hypometabolism and dopamine transporter impairment on the lesioned striatum in the SND group. Tyrosine hydroxylase immunostaining in the SND group revealed that 74.7% of nigral cells on the lesioned side were lost after lesion surgery. These results suggest that the proposed simultaneous double toxin-double lesion method successfully created a rat model of SND that had behavioral outcomes, multitracer microPET evaluation, and histological aspects consistent with SND pathology. This model will be useful for future study of SND.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apomorphine/pharmacology
		                        			;
		                        		
		                        			Behavior, Animal/drug effects
		                        			;
		                        		
		                        			Corpus Striatum/drug effects/pathology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dopamine Plasma Membrane Transport Proteins/metabolism
		                        			;
		                        		
		                        			Glucose/metabolism
		                        			;
		                        		
		                        			Injections, Intraperitoneal
		                        			;
		                        		
		                        			Levodopa/pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Medial Forebrain Bundle/drug effects/pathology
		                        			;
		                        		
		                        			Oxidopamine/*toxicity
		                        			;
		                        		
		                        			Parkinson Disease/metabolism/pathology
		                        			;
		                        		
		                        			Positron-Emission Tomography
		                        			;
		                        		
		                        			Quinolinic Acid/*toxicity
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Striatonigral Degeneration/*chemically induced/metabolism/pathology
		                        			;
		                        		
		                        			Touch/drug effects
		                        			
		                        		
		                        	
7.Effect of DHEA on Recovery of Muscle Atrophy Induced by Parkinson's Disease.
Myoung Ae CHOE ; Gyeong Ju AN ; Byung Soo KOO ; Songhee JEON
Journal of Korean Academy of Nursing 2011;41(6):834-842
		                        		
		                        			
		                        			PURPOSE: The purpose of this study was to determine the effect of dehydroepiandrosterone (DHEA) on recovery of muscle atrophy induced by Parkinson's disease. METHODS: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 20 microg) into the left striatum using stereotaxic surgery. Rats were divided into two groups; the Parkinson's disease group with vehicle treatment (Vehicle; n=12) or DHEA treatment group (DHEA; n=22). DHEA or vehicle was administrated intraperitoneally daily at a dose of 0.34 mmol/kg for 21 days. At 22-days after DHEA treatment, soleus, plantaris, and striatum were dissected. RESULTS: The DHEA group showed significant increase (p<.01) in the number of tyrosine hydroxylase (TH) positive neurons in the lesioned side substantia nigra compared to the vehicle group. Weights and Type I fiber cross-sectional areas of the contralateral soleus of the DHEA group were significantly greater than those of the vehicle group (p=.02, p=.00). Moreover, extracellular signal-regulated kinase (ERK) phosphorylation significantly decreased in the lesioned striatum, but was recovered with DHEA and also in the contralateral soleus muscle, Akt and ERK phosphorylation recovered significantly and the expression level of myosin heavy chain also recovered by DHEA treatment. CONCLUSION: Our results suggest that DHEA treatment recovers Parkinson's disease induced contralateral soleus muscle atrophy through Akt and ERK phosphorylation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Corpus Striatum/drug effects/metabolism
		                        			;
		                        		
		                        			Dehydroepiandrosterone/*pharmacology/therapeutic use
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases/metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle Fibers, Slow-Twitch/drug effects
		                        			;
		                        		
		                        			Muscle, Skeletal/drug effects/metabolism
		                        			;
		                        		
		                        			Muscular Atrophy/drug therapy/*etiology/*pathology
		                        			;
		                        		
		                        			Myosins/metabolism
		                        			;
		                        		
		                        			Neurons/drug effects/enzymology
		                        			;
		                        		
		                        			Oxidopamine/toxicity
		                        			;
		                        		
		                        			Parkinson Disease, Secondary/*chemically induced/*complications
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tyrosine 3-Monooxygenase/metabolism
		                        			
		                        		
		                        	
8.Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats.
Xin-xin YANG ; Shou-ru XUE ; Wan-li DONG ; Yan KONG
Chinese Medical Journal 2009;122(20):2449-2454
BACKGROUNDHuman amniotic epithelial cells (HAECs) are able to secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine neurons. Previous study showed that when human amniotic epithelial cells were transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced Parkinson disease rats, the cells could survive and exert functional effects. The purpose of this study was to investigate the survival and the differentiation of human amniotic epithelial cells after being transplanted into the lateral ventricle of Parkinson's disease (PD) rats, and to investigate the effects of grafts on healing PD in models.
METHODSThe Parkinson's model was made with stereotactic microinjection of 6-hydroxydopamine (6-OHDA) into the striatum of a rat. The PD models were divided into two groups: the HAECs group and the normal saline (NS) group. Some untreated rats were taken as the control. The rotational asymmetry induced by apomorphine of the HAECs group and the NS group were measured post cell transplantation. The expression of nestin and vimentin in grafts were determined by immunohistology. Ten weeks after transplantation the density of tyrosine hydroxylase positive cells in the substantia nigra of the HAECs group, NS group and the untreated group was determined. The differentiation of grafts was determined by TH immunohistology. High performance liquid chromatography (HPLC) was used to determine monoamine neurotransmitter levels in the striatum.
RESULTSThe rotational asymmetry induced by apomorphine of the HAECs group was ameliorated significantly compared to the NS group two weeks after transplantation (P < 0.01). The grafts expressed nestin and vimentin five weeks after transplantation. TH immunohistochemistry indicated that the TH positive cells in the substantia nigra of the HAECs group increased significantly compared to the NS group (P < 0.01). Tyrosine hydroxylase (TH) positive cells in the substantia nigra of the HAEC group and the NS group were decreased compared to the untreated group (P < 0.01). Dopamine and DOPAC levels in the striatum of the HAECs group increased significantly compared to the NS group (P < 0.05). Homovanillic acid (HVA) levels in the striatum of the HAECs group increased significantly compared to the NS group (P < 0.01). In addition dopamine, DOPAC, and HVA levels in the striatum and dopamine levels in the cerebrospinal fluid of the HAECs group and the NS group were decreased compared to the untreated group (P < 0.05).
CONCLUSIONSHuman amniotic epithelial cells could be used to ameliorate the rotational asymmetry induced by apomorphine of the PD models. This could have been due to the increased content of dopamine and its metabolic products, DOPAC and HVA, in the striatum in the PD models.
Amnion ; cytology ; Animals ; Apomorphine ; pharmacology ; Chromatography, High Pressure Liquid ; Epithelial Cells ; cytology ; drug effects ; transplantation ; Female ; Homovanillic Acid ; metabolism ; Humans ; Immunohistochemistry ; Oxidopamine ; toxicity ; Parkinsonian Disorders ; chemically induced ; metabolism ; therapy ; Rats ; Rats, Sprague-Dawley
9.Study on the mechanism of electroacupuncture scalp point penetration therapy in action on apoptosis in the Parkinson's disease rat model.
Shun WANG ; Hua JIANG ; Long QU
Chinese Acupuncture & Moxibustion 2009;29(4):309-313
OBJECTIVETo explore the mechanism of electroacupuncture scalp point penetration therapy in treatment of the Parkinson's disease (PD).
METHODSForty Wistar rats were randomly divided into a normal group, a sham-operation group, a model group and an electroacupuncture (EA) group. 6-OHDA was injected into the left striatum to make lateralization PD rat model. Acupuncture at "Baihui" (GV 20)-through-"Taiyang" (EX-HN 5), once each day, 6 days constituting one course. Immunohistochemical method was used to observe the facio-density and the integral optical density of brain-derived neurotrophic factor (BDNF) in the left substantia nigra, and TUNEL method was used to observe the apoptotic amount, and high performance liquid chromatography was used to observe DA contents of the left striatum in each group.
RESULTSAs compared with the model group, in the acupuncture group, the facio-density and the integral optical density in the left substantia nigra increased significantly (P < 0.05), the amount of apoptosis decreased significantly (P < 0.05), and the content of striatum DA increased significantly (P < 0.05).
CONCLUSIONEA scalp point-through-point therapy may enhance BDNF protein expression level in the substantia nigra to decrease the amount of apoptosis in the PD model rat.
Acupuncture Points ; Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor ; metabolism ; Electroacupuncture ; methods ; Female ; Immunohistochemistry ; In Situ Nick-End Labeling ; Male ; Oxidopamine ; administration & dosage ; toxicity ; Parkinson Disease, Secondary ; chemically induced ; therapy ; Random Allocation ; Rats ; Rats, Wistar ; Scalp ; pathology ; Substantia Nigra ; metabolism ; pathology ; Treatment Outcome
10.Effects of unilateral lesion of the nigrostriatal pathway by 6-OHDA on the neuronal activities of the pedunculopontine nucleus and the ventrolateral thalamic nucleus.
Huan LIU ; Jing ZHANG ; Dong-ming GAO
Chinese Journal of Applied Physiology 2009;25(2):212-216
AIMTo investigate the changes in neuronal activities of the pedunculopontine nucleus (PPN) and the ventrolateral thalamic nucleus (VL) after unilateral 6-hydroxydopamin (6-OHDA) lesioning of the striatum in rats.
METHODSExtracellular single-unit recordings were perin normal rats and 6-OHDA lesioned rats to observe the firing rate and firing pattern occurring in PPN and VL neurons.
RESULTSThe firing rate of PPN neurones significantly increased from (8.31 +/- 0.62) Hz in normal rats to (10.70 +/- 0.85) Hz in 6-OHDA lesioned rats. The firing pattern changed towards more irregular and bursty when compared with the normal rats, with the firing rate increasing in regular pattern. The firing rate of VL neurones in normal rats and 6-OHDA lesioned rats were (6.25 +/- 0.54) Hz and (5.67 +/- 0.46)Hz respectively, whereas to normal animals. Surthere were no significant differences in these two groups. In addition, the firing pattern did not change in VL compared prisingly, the firing rate in burst pattern decreased significantly.
CONCLUSIONThese findings demonstrate that PPN neurons are overactive in 6-OHDAlesioned rats, indicating the participation of this nucleus in the pathophysiology of parkinsonism and the activities of VL neurons might be regulated by projection from PPN to VL.
Action Potentials ; physiology ; Animals ; Corpus Striatum ; physiopathology ; Male ; Neural Pathways ; injuries ; pathology ; physiopathology ; Neurons ; physiology ; Oxidopamine ; toxicity ; Parkinson Disease ; pathology ; physiopathology ; Pedunculopontine Tegmental Nucleus ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; injuries ; pathology ; physiopathology ; Ventral Thalamic Nuclei ; physiopathology
            
Result Analysis
Print
Save
E-mail