1.The Dynamics of Dopamine D2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats.
Kuncheng LIU ; Miaomiao SONG ; Shasha GAO ; Lu YAO ; Li ZHANG ; Jie FENG ; Ling WANG ; Rui GAO ; Yong WANG
Neuroscience Bulletin 2023;39(9):1411-1425
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Rats
;
Animals
;
Levodopa/toxicity*
;
Dopamine
;
Parkinsonian Disorders/drug therapy*
;
Oxidopamine
;
Dyskinesia, Drug-Induced
;
Corpus Striatum/metabolism*
;
Neurons/metabolism*
;
Receptors, Dopamine D2/metabolism*
;
Antiparkinson Agents/toxicity*
2.Inhibition connexin 43 by mimetic peptide Gap27 mediates protective effects on 6-hydroxydopamine induced Parkinson's disease mouse model.
Hui Hui QUAN ; Wei Xing XU ; Yu Ze QI ; Qing Ru LI ; Hui ZHOU ; Jing HUANG
Journal of Peking University(Health Sciences) 2022;54(3):421-426
OBJECTIVE:
To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models.
METHODS:
Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot.
RESULTS:
After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05).
CONCLUSION
In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Animals
;
Connexin 43/pharmacology*
;
Disease Models, Animal
;
Dopaminergic Neurons/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine/metabolism*
;
Parkinson Disease/metabolism*
;
Peptides/pharmacology*
;
Tyrosine 3-Monooxygenase/pharmacology*
3.7,8,4′-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells
Yong Hyun KO ; Seon Kyung KIM ; Seung Hwan KWON ; Jee Yeon SEO ; Bo Ram LEE ; Young Jung KIM ; Kwang Hyun HUR ; Sun Yeou KIM ; Seok Yong LEE ; Choon Gon JANG
Biomolecules & Therapeutics 2019;27(4):363-372
Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4′-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4′-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4′-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4′-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4′-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4′-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4′-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.
Apoptosis
;
Caspase 3
;
Caspase 9
;
Catalase
;
Cell Death
;
Glutathione
;
Glycogen Synthase
;
In Vitro Techniques
;
JNK Mitogen-Activated Protein Kinases
;
L-Lactate Dehydrogenase
;
Malondialdehyde
;
Neurons
;
Oxidopamine
;
Parkinson Disease
;
Phosphatidylinositol 3-Kinases
;
Phosphotransferases
;
Protein Kinases
;
Soybeans
;
Superoxide Dismutase
;
Tyrosine 3-Monooxygenase
4.Altered Local Field Potential Relationship Between the Parafascicular Thalamic Nucleus and Dorsal Striatum in Hemiparkinsonian Rats.
Haiyan ZHANG ; Jing YANG ; Xuenan WANG ; Xiaomeng YAO ; Hongyu HAN ; Yunfeng GAO ; Hongli CHANG ; Tianyu XIANG ; Shuang SUN ; Yanan WANG ; Xiusong WANG ; Min WANG
Neuroscience Bulletin 2019;35(2):315-324
The thalamostriatal pathway is implicated in Parkinson's disease (PD); however, PD-related changes in the relationship between oscillatory activity in the centromedian-parafascicular complex (CM/Pf, or the Pf in rodents) and the dorsal striatum (DS) remain unclear. Therefore, we simultaneously recorded local field potentials (LFPs) in both the Pf and DS of hemiparkinsonian and control rats during epochs of rest or treadmill walking. The dopamine-lesioned rats showed increased LFP power in the beta band (12 Hz-35 Hz) in the Pf and DS during both epochs, but decreased LFP power in the delta (0.5 Hz-3 Hz) band in the Pf during rest epochs and in the DS during both epochs, compared to control rats. In addition, exaggerated low gamma (35 Hz-70 Hz) oscillations after dopamine loss were restricted to the Pf regardless of the behavioral state. Furthermore, enhanced synchronization of LFP oscillations was found between the Pf and DS after the dopamine lesion. Significant increases occurred in the mean coherence in both theta (3 Hz-7 Hz) and beta bands, and a significant increase was also noted in the phase coherence in the beta band between the Pf and DS during rest epochs. During the treadmill walking epochs, significant increases were found in both the alpha (7 Hz-12 Hz) and beta bands for two coherence measures. Collectively, dramatic changes in the relative LFP power and coherence in the thalamostriatal pathway may underlie the dysfunction of the basal ganglia-thalamocortical network circuits in PD, contributing to some of the motor and non-motor symptoms of the disease.
Animals
;
Brain Waves
;
physiology
;
Corpus Striatum
;
physiopathology
;
Cortical Synchronization
;
physiology
;
Dopaminergic Neurons
;
physiology
;
Electrocorticography
;
Male
;
Neural Pathways
;
physiopathology
;
Oxidopamine
;
Parkinsonian Disorders
;
physiopathology
;
Rats, Wistar
;
Thalamic Nuclei
;
physiopathology
;
Walking
;
physiology
5.Dopamine D2 receptor may be involved in the regulation of cortical-striatum synaptic transmission and autonomic activity in PD mice by exercise.
Gang ZHAO ; Dan-Yu ZHANG ; Xiao-Li LIU ; De-Cai QIAO
Acta Physiologica Sinica 2019;71(4):547-554
The aim of the present study was to reveal the role of cortical-striatum postsynaptic dopamine D2 receptor (D2R) in improving motor behavioral dysfunction in Parkinson's disease (PD) mice by exercise. C57/BL6 male adult mice were randomly divided into control, PD and PD plus exercise groups. The mice were injected with 6-OHDA in striatum to establish a unilateral injury PD model. The exercise intervention program was uniform speed running (16 m/min, 40 min/d, 5 d per week for 4 weeks). Autonomic activity of mice was tested by open field test. Cortical-striatum synaptic transmission efficiency was assessed by peak amplitude of field excitatory postsynaptic potential (fEPSP) recorded from in vitro brain slides. Meanwhile, the effects of D2R agonist on autonomic activity and cortical-striatal synaptic transmission were observed. The results showed that, compared with PD group, PD plus exercise group exhibited significantly increased autonomic motor distance and proportion of fast-moving (P < 0.05), as well as decreased maximum amplitude of fEPSP under increasing stimulation intensity (0.75-3.00 pA) (P < 0.05) and slope of stimulus-response curve. Compared with PD mice without D2R agonist, the movement distance and rapid movement ratio of PD mice treated with D2R agonist were increased significantly (P < 0.05), whereas fEPSP peak amplitude (P < 0.05) and the slope of stimulus-response curve were decreased. These results indicate that either early exercise intervention or D2R agonist treatment can inhibit the abnormal increase of cortical-striatum synaptic transmission and improve the autonomic motor ability in PD mice, suggesting that the cortical-striatum synaptic D2R may be an important molecular target for exercise to improve the autonomic motor ability of PD mice.
Animals
;
Corpus Striatum
;
physiology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine
;
Parkinson Disease
;
physiopathology
;
therapy
;
Physical Conditioning, Animal
;
Random Allocation
;
Receptors, Dopamine D2
;
agonists
;
physiology
;
Synaptic Transmission
6.Change of Extracellular Glutamate Level in Striatum during Deep Brain Stimulation of the Entopeduncular Nucleus in Rats
Hyun ju LEE ; Jae Hoon SUNG ; Jae Taek HONG ; Il Sup KIM ; Seung Ho YANG ; Chul Bum CHO
Journal of Korean Neurosurgical Society 2019;62(2):166-174
OBJECTIVE: Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson’s disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum.METHODS: Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed.RESULTS: Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category.CONCLUSION: Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.
Animals
;
Basal Ganglia
;
Chromatography, Liquid
;
Deep Brain Stimulation
;
Entopeduncular Nucleus
;
Globus Pallidus
;
Glutamates
;
Glutamic Acid
;
Humans
;
Microdialysis
;
Neurotransmitter Agents
;
Oxidopamine
;
Parkinson Disease
;
Rats
;
Substantia Nigra
;
Thalamus
;
Tyrosine 3-Monooxygenase
7.Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells.
Hyewon MOON ; Jung Hee JANG ; Tae Chang JANG ; Gyu Hwan PARK
Biomolecules & Therapeutics 2018;26(2):175-181
Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson’s disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.
Blood Vessels
;
Carbon Monoxide*
;
Carbon*
;
Caspase 3
;
Cell Death*
;
Glioma*
;
Heart Arrest
;
Heart Failure
;
Heme Oxygenase-1
;
Liver Failure
;
Neurodegenerative Diseases
;
Neuroprotection
;
Neurotransmitter Agents
;
NF-E2-Related Factor 2
;
Oxidopamine
;
Phosphorylation
;
Stomach Neoplasms
;
Superoxides
;
Transcription Factors
;
Up-Regulation
8.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism
9.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Adrenergic Agents
;
toxicity
;
Animals
;
Apomorphine
;
pharmacology
;
Disease Models, Animal
;
Dopamine Agonists
;
pharmacology
;
Electroacupuncture
;
methods
;
Functional Laterality
;
drug effects
;
Male
;
Medial Forebrain Bundle
;
injuries
;
Motor Activity
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidopamine
;
toxicity
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Rats
;
Rats, Sprague-Dawley
;
Subthalamic Nucleus
;
drug effects
;
metabolism
;
pathology
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Up-Regulation
;
drug effects
;
physiology
;
Vesicular Glutamate Transport Protein 1
;
metabolism
10.Fucoidan attenuates 6-hydroxydopamine-induced neurotoxicity by exerting anti-oxidative and anti-apoptotic actions in SH-SY5Y cells.
Myung Hwan KIM ; Hoon NAMGOONG ; Bae Dong JUNG ; Myung Sang KWON ; Yeon Shik CHOI ; Taekyun SHIN ; Hyoung Chun KIM ; Myung Bok WIE
Korean Journal of Veterinary Research 2017;57(1):1-7
Parkinson's disease (PD) is an irreversible neurological disorder with related locomotor dysfunction and is haracterized by the selective loss of nigral neurons. PD can be experimentally induced by 6-hydroxydopamine (6-OHDA). It has been reported that reactive oxygen species, which deplete endogenous glutathione (GSH) levels, may play important roles in the dopaminergic cell death characteristic of PD. Fucoidan, a sulfated algal polysaccharide, exhibits anti-inflammatory and anti-oxidant actions. In this study, we investigated whether fucoidan can protect against 6-OHDA-mediated cytotoxicity in SH-SY5Y cells. Cytotoxicity was evaluated by using MTT and LDH assays. Fucoidan alleviated cell damage evoked by 6-OHDA dose-dependently. Fucoidan reduced the number of apoptotic nuclei and the extent of annexin-V-associated apoptosis, as revealed by DAPI staining and flow cytometry. Elevation of lipid peroxidation and caspase-3/7 activities induced by 6-OHDA was attenuated by fucoidan, which also protected against cytotoxicity evoked by buthionine-sulfoximine-mediated GSH depletion. Reduction in the glutathione/glutathione disulfide ratio induced by 6-OHDA was reversed by fucoidan, which also inhibited 6-OHDA-induced disruption of mitochondrial membrane potential. The results indicate that fucoidan may have protective action against 6-OHDA-mediated neurotoxicity by modulating oxidative injury and apoptosis through GSH depletion.
Apoptosis
;
Cell Death
;
Flow Cytometry
;
Glutathione
;
Lipid Peroxidation
;
Membrane Potential, Mitochondrial
;
Nervous System Diseases
;
Neurons
;
Oxidopamine
;
Parkinson Disease
;
Reactive Oxygen Species

Result Analysis
Print
Save
E-mail