1.Research advances on the role of nuclear factor-erythroid 2-related factor 2 in wound healing.
Chinese Journal of Burns 2023;39(1):91-95
Wound healing is one of the common pathophysiological processes in the body. How to improve the condition of wound healing to promote rapid wound healing has always been a hotspot in research. Oxidative stress is one of the important factors affecting wound healing. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a classic antioxidant stress factor as well as a factor with great potential in facilitating wound healing. The activation of Nrf2 can regulate the downstream antioxidant stress elements and play roles of anti-apoptosis and cell homeostasis maintaining, which improves wound healing environment and promotes wound repair. This paper summarized the common agonists and inhibitors of Nrf2 and reviewed the roles of Nrf2 in promoting skin wound healing including diabetic ulcers, radiation injury, and ischemia-reperfusion injury, etc.
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Wound Healing/physiology*
2.Application of mixture analysis methods in association between metals mixture exposure and DNA oxidative damage.
Yan Hua WANG ; Hui Ge YUAN ; Li Ya ZHANG ; Yang LIN ; Ting WANG ; Huan XU ; Xing ZHAO ; Hua Wei DUAN
Chinese Journal of Preventive Medicine 2023;57(7):1026-1031
Objectives: To study the association between metals mixture exposure and DNA oxidative damage using mixture analysis methods, and to explore the most significant exposure factors that cause DNA oxidative damage. Methods: Workers from steel enterprises were recruited in Shandong Province. Urinary metals were measured by using the inductively coupled plasma mass spectrometry method. The level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was determined by using the ultra-high performance liquid chromatography-mass spectrometry method. Bayesian kernel machine regression (BKMR), elastic net regression and quantile g-computation regression were used to analyze the association between urinary metals and urinary 8-OHdG. Results: A total of 768 subjects aged (36.15±7.40) years old were included in the study. BKMR, elastic net regression and quantile g-computation all revealed an overall positive association between the mixture concentration and increased urinary 8-OHdG. The quantile g-computation results showed that with a 25% increase in metal mixtures, the urinary 8-OHdG level increased by 77.60%. The elastic net regression showed that with a 25% increase in exposure risk score, the urinary 8-OHdG level increased by 26%. The BKMR summarized the contribution of individual exposures to the response, and selenium, zinc, and nickel were significant contributors to the urinary 8-OHdG elevation. Conclusion: Exposure to mixed metals causes elevated levels of DNA oxidative damage, and selenium, zinc, and nickel are significant exposure factors.
Humans
;
Adult
;
Nickel/toxicity*
;
Selenium
;
Bayes Theorem
;
Metals/toxicity*
;
8-Hydroxy-2'-Deoxyguanosine
;
Oxidative Stress/physiology*
;
Zinc
;
DNA Damage
3.In situ monitoring and regulation of local reactive oxygen species levels to promote wound repair.
Chinese Journal of Burns 2022;38(10):899-904
Local oxidative stress and inflammatory response are the essential procedures in wound repair, which determine the progress, prognosis, and quality of wound repair. Reactive oxygen species is one of the important indexes reflecting oxidative stress and inflammatory response of body, which is considered as a promising target to be regulated in wound inflammation. Recently, with the rapid development of nanomedicine, our research group and other research groups have successfully developed various diagnosis and treatment reagents for reactive oxygen species through interdisciplinary integration, to monitor and regulate reactive oxygen species in wounds in real time, and to finally achieve the goal of improving the speed and quality of wound repair, thus providing a new strategy and direction for the diagnosis and treatment of local inflammatory response in wounds. This article summarizes reactive oxygen species as the regulatory target of local inflammatory response in wounds, in situ monitoring and precise regulation of reactive oxygen species.
Humans
;
Reactive Oxygen Species
;
Wound Healing/physiology*
;
Oxidative Stress/physiology*
;
Inflammation
4.Mitochondrial Oxidative Stress Enhances Vasoconstriction by Altering Calcium Homeostasis in Cerebrovascular Smooth Muscle Cells under Simulated Microgravity.
Zi Fan LIU ; Hai Ming WANG ; Min JIANG ; Lin WANG ; Le Jian LIN ; Yun Zhang ZHAO ; Jun Jie SHAO ; Jing Jing ZHOU ; Man Jiang XIE ; Xin LI ; Ran ZHANG
Biomedical and Environmental Sciences 2021;34(3):203-212
Objective:
Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process. To elucidate the mechanism for this condition, we investigated whether mitochondrial oxidative stress regulates calcium homeostasis and vasoconstriction in hindlimb unweighted (HU) rat cerebral arteries.
Methods:
Three-week HU was used to simulate microgravity in rats. The contractile responses to vasoconstrictors, mitochondrial fission/fusion, Ca
Results:
An increase of cytoplasmic Ca
Conclusion
The present results suggest that mitochondrial oxidative stress enhances cerebral vasoconstriction by regulating calcium homeostasis during simulated microgravity.
Animals
;
Calcium/metabolism*
;
Cerebral Arteries
;
Homeostasis
;
Male
;
Mitochondria/physiology*
;
Myocytes, Smooth Muscle/physiology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Vasoconstriction/physiology*
;
Weightlessness Simulation
5.RGFP966 inactivation of the YAP pathway attenuates cardiac dysfunction induced by prolonged hypothermic preservation.
Xiao-He ZHENG ; Lin-Lin WANG ; Ming-Zhi ZHENG ; Jin-Jie ZHONG ; Ying-Ying CHEN ; Yue-Liang SHEN
Journal of Zhejiang University. Science. B 2020;21(9):703-715
Oxidative stress and apoptosis are the key factors that limit the hypothermic preservation time of donor hearts to within 4-6 h. The aim of this study was to investigate whether the histone deacetylase 3 (HDAC3) inhibitor RGFP966 could protect against cardiac injury induced by prolonged hypothermic preservation. Rat hearts were hypothermically preserved in Celsior solution with or without RGFP966 for 12 h followed by 60 min of reperfusion. Hemodynamic parameters during reperfusion were evaluated. The expression and phosphorylation levels of mammalian STE20-like kinase-1 (Mst1) and Yes-associated protein (YAP) were determined by western blotting. Cell apoptosis was measured by the terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. Addition of RGFP966 in Celsior solution significantly inhibited cardiac dysfunction induced by hypothermic preservation. RGFP966 inhibited the hypothermic preservation-induced increase of the phosphorylated (p)-Mst1/Mst1 and p-YAP/YAP ratios, prevented a reduction in total YAP protein expression, and increased the nuclear YAP protein level. Verteporfin (VP), a small molecular inhibitor of YAP-transcriptional enhanced associate domain (TEAD) interaction, partially abolished the protective effect of RGFP966 on cardiac function, and reduced lactate dehydrogenase activity and malondialdehyde content. RGFP966 increased superoxide dismutase, catalase, and glutathione peroxidase gene and protein expression, which was abolished by VP. RGFP966 inhibited hypothermic preservation-induced overexpression of B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and cleaved caspase-3, increased Bcl-2 mRNA and protein expression, and reduced cardiomyocyte apoptosis. The antioxidant and anti-apoptotic effects of RGFP966 were cancelled by VP. The results suggest that supplementation of Celsior solution with RGFP966 attenuated prolonged hypothermic preservation-induced cardiac dysfunction. The mechanism may involve inhibition of oxidative stress and apoptosis via inactivation of the YAP pathway.
Acrylamides/pharmacology*
;
Animals
;
Apoptosis/drug effects*
;
Cryopreservation
;
Disaccharides/pharmacology*
;
Electrolytes/pharmacology*
;
Glutamates/pharmacology*
;
Glutathione/pharmacology*
;
Heart/physiology*
;
Heart Transplantation/methods*
;
Hepatocyte Growth Factor/antagonists & inhibitors*
;
Histidine/pharmacology*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Male
;
Mannitol/pharmacology*
;
Oxidative Stress/drug effects*
;
Phenylenediamines/pharmacology*
;
Proto-Oncogene Proteins/antagonists & inhibitors*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
YAP-Signaling Proteins
6.Imbalance of osteoprotegerin/receptor activator of nuclear factor-κB ligand and oxidative stress in patients with obstructive sleep apnea-hypopnea syndrome.
Xiao-Rong MA ; Yong WANG ; Yong-Chang SUN
Chinese Medical Journal 2019;132(1):25-29
BACKGROUND:
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is associated with a higher prevalence of osteoporosis. However, the underlying mechanisms linking OSAHS with bone loss are still unclear. The aim of this study was to investigate the changes of receptor activator of nuclear factor-κB ligand (RANKL, an osteoclastogenesis-promoting factor) and osteoprotegerin (OPG, the decoy receptor for RANKL), oxidative stress and bone metabolism markers in OSAHS, in order to understand the potential mechanisms underlying bone loss in OSAHS patients.
METHODS:
Forty-eight male patients with OSAHS, confirmed by polysomnography (PSG) study, were enrolled. Twenty male subjects who were confirmed as not having OSAHS served as the controls. The subjects' bone mineral density (BMD) was assessed in lumbar spine and femoral neck using dual-energy X-ray absorptiometry (DXA). Blood samples were collected from all subjects for measurement of RANKL, OPG, the bone formation marker bone-specific alkaline phosphatase (BAP), the bone resorption marker tartrate-resistant acid phosphatase 5b (TRAP-5b), and total antioxidant capacity (TAOC).
RESULTS:
The BMD and the T-score of the femoral neck and the lumbar spine were significantly lower in OSAHS patients as compared to the control group (P < 0.05). The serum level of BAP was significantly decreased in the OSAHS group (15.62 ± 5.20 μg/L) as compared to the control group (18.83 ± 5.50 μg/L, t = -2.235, P < 0.05), while the levels of TRAP-5b did not differ between the two groups (t = -1.447, P > 0.05). The serum level of OPG and the OPG/RANKL ratio were lower in the OSAHS group compared to the control group (both P < 0.05). TAOC level was also decreased significantly in the OSAHS group (P < 0.05). Correlation analysis showed that the TAOC level was positively correlated with BAP in the OSAHS group (r = 0.248, P = 0.04), but there were no correlations between TAOC and the BMD or the T-scores. The correlations between the level of OPG (or the OPG/RANKL ratio) and BMD or TAOC did not reach significance.
CONCLUSION
In OSAHS patients, lower levels of TAOC were associated with decreased bone formation, suggesting a role of oxidative stress in bone loss, while the role of OPG/RANKL imbalance in bone metabolism in OSAHS needs further evaluation.
Absorptiometry, Photon
;
Adolescent
;
Adult
;
Bone Density
;
physiology
;
Female
;
Humans
;
Male
;
Middle Aged
;
NF-kappa B
;
blood
;
Osteogenesis
;
physiology
;
Osteoporosis
;
blood
;
Osteoprotegerin
;
blood
;
Oxidative Stress
;
physiology
;
Polysomnography
;
Sleep Apnea, Obstructive
;
blood
;
Young Adult
7.Potential protective effects of red yeast rice in endothelial function against atherosclerotic cardiovascular disease.
Shu-Jun FENG ; Zhi-Han TANG ; Ying WANG ; Xin-Ying TANG ; Tao-Hua LI ; Wei TANG ; Ze-Min KUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):50-58
Atherosclerotic cardiovascular disease (ASCVD) is the deadliest disease in the world, with endothelial injury occurring throughout the course of the disease. Therefore, improvement in endothelial function is of essential importance in the prevention of ASCVD. Red yeast rice (RYR), a healthy traditional Chinese food, has a lipid modulation function and also plays a vital role in the improvement of endothelial reactivity and cardiovascular protection; thus, it is significant in the prevention and treatment of ASCVD. This article reviews the molecular mechanisms of RYR and its related products in the improvement of endothelial function in terms of endothelial reactivity, anti-apoptosis of endothelial progenitor cells, oxidative stress alleviation and anti-inflammation.
Apoptosis
;
drug effects
;
Atherosclerosis
;
pathology
;
physiopathology
;
prevention & control
;
Biological Products
;
chemistry
;
pharmacology
;
therapeutic use
;
Cardiovascular Diseases
;
pathology
;
physiopathology
;
prevention & control
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Endothelium, Vascular
;
cytology
;
drug effects
;
physiology
;
Humans
;
Inflammation
;
prevention & control
;
Lipid Metabolism
;
drug effects
;
Oxidative Stress
;
drug effects
8.The regulation of retinoid X receptor-mediated oxidative stress pathway in rat pulmonary ischemia/reperfusion injury.
Bing-Qian XIANG ; Wang-Xin YAN ; Guo-Qiang LOU ; Hui GAO ; Zhuo-Lin ZHOU ; Yi-Ming WU ; Wan-Tie WANG
Acta Physiologica Sinica 2019;71(2):301-310
The aim of this study was to investigate the regulatory role of retinoid X receptor (RXR)-mediated oxidative stress pathway in rat pulmonary ischemia/reperfusion injury (PIRI) and the underlying mechanism. Seventy-seven male Sprague-Dawley (SD) rats were randomly divided into 7 groups (n = 11): control group, sham group, sham+9-cis-retinoid acid (9-cRA, RXR agonist) group, sham+HX531 (RXR inhibitor) group, ischemia/reperfusion (I/R) group, I/R+9-cRA group, and I/R+HX531 group. The unilateral lung I/R model was established by obstruction of left lung hilus for 30 min and reperfusion for 180 min in vivo. The rats in I/R+9-cRA and I/R+HX531 groups were given intraperitoneal injection of 9-cRA and HX531 before thoracotomy. After reperfusion, the left lung tissue was taken to evaluate the lung tissue injury, and the oxidative stress-related indexes of the lung tissue were detected by the corresponding kits. The lung tissue morphology and the ultrastructure of the alveolar epithelial cells were observed by HE staining and transmission electron microscope, respectively. The protein expression of RXR in lung tissue was observed by immunofluorescence labeling method, and the expression level of nuclear factor E2-related factor (Nrf2) protein was detected by Western blot. The results showed that, compared with the sham group, the I/R group exhibited obviously injured lung tissue, decreased SOD activity, increased MDA content and MPO activity, and down-regulated expression level of Nrf2 protein. Compared with the I/R group, the I/R+9-cRA group showed alleviated lung tissue injury, increased activity of SOD, decreased MDA content and MPO activity, and up-regulated expression levels of RXR and Nrf2 protein. The above-mentioned improvement effects of 9-cRA were reversed by HX531 treatment. These results suggest that RXR activation can effectively protect the lung tissue against I/R injury, and the mechanism may involve the activation of Nrf2 signaling pathway, the enhancement of antioxidant level and the reduction of oxidative stress response.
Animals
;
Lung
;
physiopathology
;
Male
;
NF-E2-Related Factor 2
;
physiology
;
Oxidative Stress
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
Retinoid X Receptors
;
physiology
;
Signal Transduction
9.Mechanisms of Toxicity and Cardiotoxicity of Alcohol Extract from Root, Stem and Leaf of Chloranthus Serratus.
Shu Ping SUN ; Hong Xing LI ; Xiao Ping ZHANG ; Yun Fei MA ; Mei YANG
Journal of Forensic Medicine 2019;35(2):224-229
Objective To compare the differences of cardiotoxicity of alcohol extract from root, stem and leaf of Chloranthus serratus in the rats, and discuss preliminarily its mechanism of toxicity. Methods Rats were randomly divided into four groups: blank, root alcohol, stem alcohol and leaf alcohol, with 8 in each group. After 14 days of continuous intragastric administration, the body mass change curves were drawn. The cardiac coefficient was calculated. The contents of creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) as well as the content changes of oxidative stress indexes - total superoxide dismutase (T-SOD) and malondialdehyde (MDA) in the serum of rats were detected. The cardiac pathomorphology changes in the rats were observed. The expression of intercellular adhesion molecule (ICAM-1) and heme oxygenase (HO-1) in myocardial tissue was detected. Results Body mass growth rate: stem alcohol group was the smallest, followed by leaf alcohol group. The difference of cardiac coefficient of every group had no statistical significance (P>0.05). The myocardial tissues of stem alcohol group suffered the most serious damage, followed by the leaf alcohol group. The contents of CK, CK-MB, LDH and α-HBDH in stem alcohol group increased (P<0.05). The increase of MDA content and decrease of T-SOD content in stem alcohol group had statistical significance compared with the blank group and root alcohol group, while the leaf alcohol group only had statistical significance in the decrease of T-SOD content compared with the blank group (P<0.05). The positive expression of ICAM-1 enhanced and the expression of HO-1 protein decreased in every group after the intervention of different extracts. The change trend was stem alcohol > leaf alcohol > root alcohol group. Conclusion The alcohol extract from the stem has the highest cardiotoxicity, followed by the leaf extract, and its mechanism of toxicity may be related to oxidative stress.
Animals
;
Cardiotoxicity
;
Ethanol
;
Heart/drug effects*
;
Malondialdehyde
;
Myocardium/metabolism*
;
Oxidative Stress/physiology*
;
Plant Extracts/toxicity*
;
Plant Leaves/chemistry*
;
Plant Roots/chemistry*
;
Plant Stems/chemistry*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
10.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis

Result Analysis
Print
Save
E-mail