1.Research progress on the biological effects of HIF-1α on follicle development and ovulation.
Lin-Na MA ; Kun MA ; Xiao-Di FAN ; Han ZHANG ; Jia-Ni LI ; Shan-Feng GAO
Acta Physiologica Sinica 2023;75(5):727-735
Hypoxia inducible factor-1α (HIF-1α), as a hypoxia inducible factor, affects women's reproductive function by regulating the development and excretion of follicles. HIF-1α induces glycolysis and autophagy in the granule cells by promoting oocyte development, regulating the secretion of related angiogenic factors, and improving follicle maturity. In addition, HIF-1α promotes the process of luteinization of follicular vesicles, maintains luteal function, and finally completes physiological luteal atrophy through cumulative oxidative stress. Dysfunction of HIF-1α will cause a series of pathological consequences, such as angiogenesis defect, energy metabolism abnormality, excessive oxidative stress and dysregulated autophagy and apoptosis, resulting in ovulation problem and infertility. This article summarizes the previous studies on the regulation of follicle development and excretion and maintenance of luteal function and structural atrophy by HIF-1α. We also describe the effective intervention mechanism of related drugs or bioactive ingredients on follicular dysplasia and ovulation disorders through HIF-1α, in order to provide a systematic and in-depth insights for solving ovulation disorder infertility.
Female
;
Humans
;
Atrophy/metabolism*
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Infertility/metabolism*
;
Ovarian Follicle
;
Ovulation
2.Research Progress in the Regulation of Follicle Development by Melatonin.
Jing-Jing LIU ; Zong-Yang LI ; Li-Mei LIU ; Xiao-Yan PAN
Acta Academiae Medicinae Sinicae 2023;45(6):997-1004
Melatonin,an endocrine hormone synthesized by the pineal gland,plays an important role in the reproduction.The growth and development of follicles is the basis of female mammalian fertility.Follicles have a high concentration of melatonin.Melatonin receptors exist on ovarian granulosa cells,follicle cells,and oocytes.It regulates the growth and development of these cells and the maturation and atresia of follicles,affecting female fertility.This paper reviews the protective effects and regulatory mechanisms of melatonin on the development of ovarian follicles,granulosa cells,and oocytes and makes an outlook on the therapeutic potential of melatonin for ovarian injury,underpinning the clinical application of melatonin in the future.
Animals
;
Female
;
Melatonin/pharmacology*
;
Ovarian Follicle
;
Oocytes
;
Granulosa Cells/physiology*
;
Mammals
3.Qirong Tablets inhibits apoptosis of ovarian granulosa cells via PI3K/Akt/ HIF-1 signaling pathway.
Nan NAN ; Xiao-Li DU ; Miao CHEN ; Jia-Qi LUO
China Journal of Chinese Materia Medica 2023;48(17):4774-4781
This study aims to observe the effect and explore the mechanism of Qirong Tablets in the treatment of premature ovarian insufficiency(POI) in mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor 1(HIF-1) signaling pathway. Sixty SPF female BALB/c mice were randomly divided into normal group, model group, positive control group, Qirong Tablets low-, medium-and high-dose group. The normal group was intraperitoneally injected with the same amount of normal saline, and the other groups were intraperitoneally injected with cyclophosphamide 120 mg·kg~(-1)·d~(-1) once to establish a POI animal model. After the model was successfully established, the low-, medium-and high-dose groups of Qirong Tablets were administered orally with 0.6, 1.2, 2.4 mg·kg~(-1)·d~(-1) respectively. The positive control group was given 0.22 mg·kg~(-1)·d~(-1) Clementine Tablets by intragastric administration, and the normal group and model group were given intragastric administration with the same amount of normal saline, and the treatment was 28 d as a course of treatment. After drug intervention, enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-mullerian hormone(AMH) in peripheral blood, and hematoxylin-eosin(HE) staining to observe the ovarian tissue. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay was used to detect the apoptosis of granulosa cells, and Western blot to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, PI3K, Akt, and HIF-1. Compared with the normal group, the modeling of POI caused loose or destroyed ovarian tissue with vacuolar structures, edema and fibrosis in the ovarian interstitium, disordered or loose arrangement of granulosa cells, and reduced normal follicles. Compared with the model group, drug interventions restored the ovarian tissue and follicles at all the development stages and reduced atretic follicles. Compared with the normal group, the modeling of POI lowered the serum level of E_2 and AMH(P<0.01), and elevated the level of FSH and LH(P<0.01). Compared with the model group, high-dose Qirong Tablets elevated the levels of E_2 and AMH(P<0.05), and lowered the levels of FSH and LH(P<0.05). Compared with the normal group, the modeling of POI up-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 and down-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.01). Compared with the model group, low-, medium-, and high-dose Qirong Tablets down-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 proteins and up-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.05). In conclusion, Qirong Tablets can up-regulate the expression Bcl-2, down-regulate the expression of Bax and caspase-3 in POI mice. Qirong Tablets may inhibit the apoptosis of follicular granulosa cells in mice, thereby delaying ovarian aging, improving reproductive axis function, and strengthening ovarian reserve capacity, which may be associated with the inhibition of PI3K/Akt/HIF-1 pathway.
Humans
;
Mice
;
Female
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
bcl-2-Associated X Protein
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/metabolism*
;
Saline Solution/therapeutic use*
;
Signal Transduction
;
Granulosa Cells
;
Primary Ovarian Insufficiency/drug therapy*
;
Follicle Stimulating Hormone/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
5.Effect of Liangfang Wenjing Decoction on expression of key glycolytic enzymes in uterus and ovaries of rats with coagulating cold and blood stasis syndrome.
Jin-Yu GUO ; Yi XING ; Peng LIU ; Di WANG ; Xiu-Mei CHENG ; Xin-Guo WANG ; Yan-Qing REN
China Journal of Chinese Materia Medica 2023;48(12):3215-3223
This study aimed to investigate the relationship between coagulating cold and blood stasis syndrome and glycolysis, and observe the intervention effect of Liangfang Wenjing Decoction(LFWJD) on the expression of key glycolytic enzymes in the uterus and ovaries of rats with coagulating cold and blood stasis. The rat model of coagulating cold and blood stasis syndrome was established by ice-water bath. After modeling, the quantitative scoring of symptoms were performed, and according to the scoring results, the rats were randomly divided into a model group and LFWJD low-, medium-and high-dose groups(4.7, 9.4, 18.8 g·kg~(-1)·d~(-1)), with 10 in each group. Another 10 rats were selected as the blank group. After 4 weeks of continuous administration by gavage, the quantitative scoring of symptoms was repeated. Laser speckle flowgraphy was used to detect the changes of microcirculation in the ears and uterus of rats in each group. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of uterus and ovaries of rats in each group. The mRNA and protein expressions of pyruvate dehydrogenase kinase 1(PDK1), hexokinase 2(HK2) and lactate dehydrogenase A(LDHA) in the uterus and ovaries of rats were examined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. The rats in the model group showed signs of coagulating cold and blood stasis syndrome, such as curl-up, less movement, thickened veins under the tongue, and reduced blood perfusion in the microcirculation of the ears and uterus, and HE staining revealed a thinning of the endometrium with disorganized arrangement of epithelial cells and a decrease in the number of ovarian follicles. Compared with the model group, the treatment groups had alleviated coagulating cold and blood stasis, which was manifested as red tongue, reduced nail swelling, no blood stasis at the tail end as well as increased blood perfusion of the microcirculation in the ears and uterus(P<0.05 or P<0.01). Among the groups, the LFWJD medium-and high-dose groups had the most significant improvement in coagulating cold and blood stasis, with neatly arranged columnar epithelial cells in uterus, and the number of ovarian follicles was higher than that in the model group, especially mature follicles. The mRNA and protein expressions of PDK1, HK2, LDHA in uterus and ovaries were up-regulated in the model group(P<0.05 or P<0.01), while down-regulated in LFWJD medium-and high-dose groups(P<0.05 or P<0.01). The LFWJD low-dose group presented a decrease in the mRNA expressions of PDK1, HK2 and LDHA in uterus and ovaries as well as in the protein expressions of HK2 and LDHA in uterus and HK2 and PDK1 in ovaries(P<0.05 or P<0.01). The therapeutic mechanism of LFWJD against coagulating cold and blood stasis syndrome is related to the down-regulation of key glycolytic enzymes PDK1, HK2 and LDHA, and the inhibition of glycolytic activities in uterus and ovaries.
Female
;
Animals
;
Rats
;
Ovary
;
Uterus
;
Ovarian Follicle
;
Lactate Dehydrogenase 5
;
Glycolysis
6.Effects of Bushen Yiqi Huoxue Decoction in Treatment of Patients with Diminished Ovarian Reserve: A Randomized Controlled Trial.
Jing ZHOU ; Xin-Yao PAN ; Jin LIN ; Qi ZHOU ; Li-Kun LAN ; Jun ZHU ; Ru DUAN ; Lan WANG ; Yan SUN ; Ling WANG
Chinese journal of integrative medicine 2022;28(3):195-201
OBJECTIVE:
To explore the therapeutic effect of Bushen Yiqi Huoxue Decoction BYHD) in patients with diminished ovarian reserve (DOR).
METHODS:
A total of 180 patients with DOR diagnosed from December 2013 to December 2014 were equally assigned into progynova and duphaston (E+D) group, Zuogui Pill group and BYHD group with 60 cases in each by computerized randomization. Patients received E+D, Zuogui Pill or BYHD for 12 months, respectively. Follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), anti-Müllerian hormone (AMH), antral follicle count (AFC), ovarian volume, endometrial thickness, and the resistance indices (RIs) of ovarian arteries and uterine arteries were observed before and after treatment.
RESULTS:
Nine women (4 from the E+D group, 3 from the Zuogui Pill group, and 2 from the BYHD group) withdrew from the study. After 6 months, Zuogui Pill and BYHD significantly decreased FSH and LH and increased endometrial thickness and AMH (all P<0.01). BYHD also resulted in E2 elevation (P<0.05), ovary enlargement (P<0.05), AFC increase (P<0.01), and RI of ovarian arteries decrease (P<0.05). After 12 months, further improvements were observed in the Zuogui Pill and BYHD groups (all P<0.01), but BYHD showed better outcomes, with lower FSH, larger ovaries and a thicker endometrium compared with the Zuogui Pill group (all P<0.01). However, E+D only significantly increased endometrial thickness (P<0.01) and no significant improvements were observed in the RI of uterine arteries in the three groups.
CONCLUSIONS
BYHD had a favorable therapeutic effect in patients with DOR by rebalancing hormone levels, promoting ovulation, and repairing the thin endometrium. The combination of tonifying Shen (Kidney), benefiting qi and activating blood circulation may be a promising therapeutic strategy for DOR.
Anti-Mullerian Hormone/pharmacology*
;
Drugs, Chinese Herbal
;
Female
;
Follicle Stimulating Hormone
;
Humans
;
Luteinizing Hormone
;
Ovarian Reserve
7.Moxibustion alleviates decreased ovarian reserve in rats by restoring the PI3K/AKT signaling pathway.
Hong-Xiao LI ; Ling SHI ; Shang-Jie LIANG ; Chen-Chen FANG ; Qian-Qian XU ; Ge LU ; Qian WANG ; Jie CHENG ; Jie SHEN ; Mei-Hong SHEN
Journal of Integrative Medicine 2022;20(2):163-172
OBJECTIVE:
Moxibustion, a common therapy in traditional Chinese medicine, has potential benefits for treating decreased ovarian reserve (DOR). The present study investigates the protective effect of moxibustion in a rat model of DOR and explores the possible mechanisms.
METHODS:
Sixty-four female Sprague-Dawley rats were randomly divided into four groups: control, DOR, moxibustion (MOX), and hormone replacement therapy (HRT). The DOR rat model was established by intragastric administration of 50 mg/kg Tripterygium glycoside suspension (TGS), once daily for 14 days. MOX and HRT treatments were given from the day TGS administration was initiated. The ovarian reserve function was evaluated by monitoring the estrus cycle, morphological changes in ovaries, levels of serum estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and anti-Mullerian hormone (AMH), pregnancy rate and embryo numbers. Terminal-deoxynucleotidyl transferase-mediated nick-end-labeling staining was used to identify ovarian granulosa cell apoptosis, while the protein and mRNA expressions of Bax, B-cell lymphoma-2 (Bcl-2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in ovarian tissues were examined by immunohistochemistry, Western blot and quantitative reverse transcription-polymerase chain reaction.
RESULTS:
Compared with the DOR group, MOX improved the disordered estrous cycle, promoted follicular growth, reduced the number of atresia follicles, increased the concentrations of serum E2 and AMH, and decreased serum FSH and LH concentrations. More importantly, the pregnancy rate and embryo numbers in DOR rats were both upregulated in the MOX treatment group, compared to the untreated DOR model. Further, we found that the MOX group had reduced apoptosis of ovarian granulosa cells, increased Bcl-2 expression and reduced expression of Bax. Furthermore, the PI3K/AKT signaling pathway was triggered by the moxibustion treatment.
CONCLUSION
Moxibustion improved ovarian function and suppressed apoptosis of ovarian granulosa cells in a rat model of DOR induced by TGS, and the mechanism may involve the PI3K/AKT signaling pathway.
Animals
;
Female
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
;
Moxibustion
;
Ovarian Reserve
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Pregnancy
;
Proto-Oncogene Proteins c-akt/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
bcl-2-Associated X Protein/genetics*
8.Lycium barbarum polysaccharides regulate AMPK/Sirt autophagy pathway to delay D-gal-induced premature ovarian failure.
Yin JIANG ; Hui WANG ; Xiao YU ; Yi DING
China Journal of Chinese Materia Medica 2022;47(22):6175-6182
This study aims to explore the molecular mechanism of Lycium barbarum polysaccharides(LBP) in alleviating premature ovarian failure(POF) in mice via the 5'-adenosine monophosphate activated protein kinase(AMPK)/silent information regulator 1(Sirt1) signaling pathway. The POF mouse model was established by D-galactose(D-gal) injection at the back. Six groups were set up, including a normal control group, a model group, a LBP group, a 3-MA(autophagy inhibitor 3-methyladenine) group, an AMPK inhibitor group, and a LBPAMPK inhibitor group, with 15 mice in each group. After 28 continuous days of administration, enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of sex hormones [estradiol(E_2), luteinizing hormone(LH), and follicle-stimulating hormone(FSH)] in serum. The ovarian mass coefficient was measured. Senescence-associated β-Galactosidase(SA-β-Gal) staining and hematoxylin-eosin(HE) staining were performed for observing the state of ovarian senescence and the morphological changes of the ovary. Immunohistochemical method was used to measure the expression of the autophagy marker LC3-Ⅱ in ovarian tissue. Western blot was employed to measure the expression levels of the senescence marker p16~(INK4 a), autophagy markers(LC3-Ⅱ and Beclin-1), the autophagy substrate p62, lysosome-associated membrane protein 2(LAMP2), and the proteins in the AMPK/Sirt1 pathway and mammalian target of rapamycin complex 1(mTORC1)/UNC-51-like kinase 1 Ser757 site(Ulk1 Ser757) pathway. Compared with the normal control group, the modeling of POF decreased the ovarian granulosa cells and follicles, led to the ovarian aging and severe sex hormone secretion disorders, weakened ovarian autophagy activity, and down-regulated the expression of proteins in the AMPK/Sirt1 pathway(P<0.05). Compared with the model group, the treatment with LBP increased ovarian granulosa cells and follicles, alleviated aging and sex hormone disorders, increased autophagy activity, and activated the AMPK/Sirt1 pathway(P<0.05). Both 3-MA and AMPK inhibitor can inhibit autophagy and aggravate ovarian damage and aging in mice. AMPK inhibitor can partially attenuate the role of LBP in promoting autophagy activation and alleviating aging and ovarian tissue damage(P<0.05). LBP can alleviate the symptoms of POF induced by D-gal by promoting the activation of AMPK/Sirt1 pathway.
Animals
;
Female
;
Humans
;
Mice
;
AMP-Activated Protein Kinases/metabolism*
;
Autophagy/drug effects*
;
Follicle Stimulating Hormone/blood*
;
Lycium/chemistry*
;
Polysaccharides/therapeutic use*
;
Primary Ovarian Insufficiency/drug therapy*
;
Sirtuin 1/metabolism*
9.Curcumin Alleviates Hyperandrogenism and Promotes Follicular Proliferation in Polycystic Ovary Syndrome Rats: Insights on IRS1/PI3K/GLUT4 and PTEN Modulations.
Luo ZHENG ; Pei-Fang CHEN ; Wei-Chao DAI ; Zhi-Qun ZHENG ; Hui-Lan WANG
Chinese journal of integrative medicine 2022;28(12):1088-1095
OBJECTIVE:
To explore the effect of curcumin on the insulin receptor substrate 1 (IRS1)/phosphatidylinositol-3-kinase (PI3K)/endometrial expression of glucose 4 (GLUT4) signalling pathway and its regulator, phosphatase and tensin homolog (PTEN), in a rat model of polycystic ovarian syndrome (PCOS).
METHODS:
PCOS model was induced by letrozole intragastric administration. Sprague-Dawley rats were randomized into 4 groups according to a random number table: (1) control group; (2) PCOS group, which was subjected to PCOS and received vehicle; (3) curcumin group, which was subjected to PCOS and treated with curcumin (200 mg/kg for 2 weeks); and (4) curcumin+LY294002 group, which was subjected to PCOS, and treated with curcumin and LY294002 (a specific PI3K inhibitor). Serum hormone levels (17 β-estradiol, follicle stimulating hormone, luteinizing hormone, progesterone, and testosterone) were measured by enzyme linked immunosorbent assay, and insulin resistance (IR) was assessed using the homeostasis model assessment of IR. Ovarian tissues were stained with haematoxylin and eosin for pathological and apoptosis examination. Expression levels of key transcriptional regulators and downstream targets, including IRS1, PI3K, protein kinase B (AKT), GLUT4, and PTEN, were measured via reverse transcription polymerase chain reaction and Western blot, respectively.
RESULTS:
The PCOS group showed impaired ovarian morphology and function. Compared with the PCOS group, curcumin treatment exerted ovarioprotective effects, down-regulated serum testosterone, restored IR, inhibited inflammatory cell infiltration in ovarian tissues, decreased IRS1, PI3K, and AKT expressions, and up-regulated GLUT4 and PTEN expressions in PCOS rats (P<0.05 or P<0.01). In contrast, IRS1, PI3K, AKT, and PTEN expression levels were not significantly different between PCOS and curcumin+LY294002 groups (P>0.05).
CONCLUSION
The beneficial effects of curcumin on PCOS rats included the alteration of serum hormone levels and recovery of morphological ovarian lesions, in which, PTEN, a new target, may play a role in regulating the IRS1/PI3K/GLUT4 pathway.
Animals
;
Female
;
Humans
;
Rats
;
Cell Proliferation
;
Curcumin/therapeutic use*
;
Follicle Stimulating Hormone
;
Glucose
;
Hyperandrogenism
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance
;
Ovarian Cysts
;
Ovarian Neoplasms
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polycystic Ovary Syndrome/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Testosterone
10.Metformin improves polycystic ovary syndrome and activates female germline stem cells in mice.
Chun-Hong WANG ; Qiang-Qiang WANG ; Ya-Shan SU ; Ya-Qun SUN ; Miao SUN ; Xin-Rui LIU ; Hui-Ming MA ; Guang-Yong LI ; Xiao-Li DU ; Rui HE
Acta Physiologica Sinica 2022;74(3):370-380
Polycystic ovary syndrome (PCOS) is a common disease caused by complex endocrine and metabolic abnormalities in women of childbearing age. Metformin is the most widely used oral hypoglycemic drug in clinic. In recent years, metformin has been used in the treatment of PCOS, but its mechanism is not clear. In this study, we aimed to investigate the effect of metformin on PCOS and its mechanism through PCOS mouse model. Female C57BL/6J mice aged 4-5 weeks were intragastrically given letrozole (1 mg/kg daily) combined with a high-fat diet (HFD) for 21 days to establish the PCOS model. After modeling, metformin (200 mg/kg daily) was intragastrically administered. One month later, the body weight and oral glucose tolerance test (OGTT) were measured. Hematoxylin eosin (H&E) staining was used to detect the pathological changes of ovary. The serum levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), E2 and testosterone (T) were measured by ELISA. The expression of DDX4/MVH was detected by immunohistochemistry. DDX4/MVH and PCNA were co-labeled by immunofluorescence. The protein levels of DDX4/MVH, PCNA, cyclin D2, AMPK and mTOR were detected by Western blot. The results showed that after metformin treatment, the body weights of PCOS mice were gradually returned to normal, glucose tolerance was significantly improved, serum E2 levels were increased, while AMH, LH, T levels and LH/FSH ratio were decreased. Ovarian polycystic lesions were reduced with reduced atresia follicles. Furthermore, the number of proliferative female germline stem cells (FGSCs) and levels of proliferation related proteins (PCNA, cyclin D2) were significantly increased, and the p-mTOR and p-AMPK levels were markedly up-regulated. These results suggest that metformin treatment not only improves hyperandrogenemia, glucose intolerance and polycystic ovarian lesions in PCOS, but also activates the function of FGSCs. The underlying mechanism may be related to the phosphorylation of AMPK and mTOR. These findings provide new evidence to use metformin in the treatment of PCOS and follicular development disorder.
AMP-Activated Protein Kinases
;
Animals
;
Cyclin D2
;
Female
;
Follicle Stimulating Hormone/therapeutic use*
;
Humans
;
Luteinizing Hormone/therapeutic use*
;
Metformin/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Oogonial Stem Cells/metabolism*
;
Ovarian Cysts/drug therapy*
;
Ovarian Neoplasms
;
Polycystic Ovary Syndrome/drug therapy*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
TOR Serine-Threonine Kinases

Result Analysis
Print
Save
E-mail