1.Mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
Xiao-Hua ZHU ; Qiu-Gen LI ; Jun WANG ; Guo-Zhu HU ; Zhi-Qiang LIU ; Qing-Hua HU ; Gang WU
Chinese Journal of Contemporary Pediatrics 2017;19(12):1278-1284
OBJECTIVETo investigate the molecular mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
METHODSA total of 24 mice were randomly divided into control group, ovalbumin (OVA)-induced asthma group (OVA group), and JQ1 intervention group (JQ1+OVA group), with 8 mice in each group. OVA sensitization/challenge was performed to establish a mouse model of asthma. At 1 hour before challenge, the mice in the JQ1+OVA group were given intraperitoneal injection of JQ1 solution (50 μg/g). Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected at 24 hours after the last challenge, and the total number of cells and percentage of eosinophils in BALF were calculated. Pathological staining was performed to observe histopathological changes in lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression of E-cadherin and vimentin during epithelial-mesenchymal transition (EMT).
RESULTSCompared with the control group, the OVA group had marked infiltration of inflammatory cells in the airway, thickening of the airway wall, increased secretion of mucus, and increases in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the OVA group, the JQ1+OVA group had significantly alleviated airway inflammatory response and significant reductions in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the control group, the OVA group had significant reductions in the mRNA and protein expression of E-cadherin and significant increases in the mRNA and protein expression of vimentin (P<0.01); compared with the OVA group, the JQ1+OVA group had significant increases in the mRNA and protein expression of E-cadherin and significant reductions in the mRNA and protein expression of vimentin (P<0.01); there were no significant differences in these indices between the JQ1+OVA group and the control group (P>0.05).
CONCLUSIONSMice with OVA-induced asthma have airway remodeling during EMT. BET bromodomain inhibitor JQ1 can reduce airway inflammation, inhibit EMT, and alleviate airway remodeling, which provides a new direction for the treatment of asthma.
Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; Azepines ; pharmacology ; Cadherins ; analysis ; genetics ; Epithelial-Mesenchymal Transition ; Female ; Mice ; Nuclear Proteins ; antagonists & inhibitors ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Transcription Factors ; antagonists & inhibitors ; Triazoles ; pharmacology ; Vimentin ; analysis ; genetics
2.Effects of adipose-derived stem cells and non-methylated CpG-oligodeoxynucleotides on peripheral blood CD4CD25regulatory T cells in young mice with food allergy.
Xu-Lin CHEN ; Cheng-Zhong ZHENG
Chinese Journal of Contemporary Pediatrics 2017;19(5):590-595
OBJECTIVETo investigate the effects of adipose-derived stem cells (ADSC) and non-methylated CpG-oligodeoxynucleotides (CpG-ODN) on the expression of peripheral blood CD4CD25regulatory T (Treg) cells in young mice with food allergy, as well as their immune intervention effects.
METHODSA total of 40 female BALB/c mice were randomly divided into control group, allergic group, ADSC treatment group, and CpG-ODN treatment group, with 10 mice in each group. A mouse model of food allergy was established by intraperitoneal injection and intragastric administration of ovalbumin (OVA) for sensitization and challenge. The mice in the control group were treated with normal saline at the same dose; the mice in the ADSC treatment group were given intraperitoneal injection of ADSC (1×10cells for each mouse) before and after OVA challenge, and those in the CpG-ODN treatment group were given intraperitoneal injection of non-methylated CpG-ODN solution (40 μg for each mouse) at 1 hour before challenge by gavage. The allergic symptom scores were determined for each group after model establishment. ELISA was used to measure the serum level of OVA-IgE. Flow cytometry was used to measure the percentage of peripheral blood CD4CD25Treg cells. Hematoxylin and eosin staining was used for the pathological analysis of the jejunum.
RESULTSThe allergic group had significantly higher allergic symptom scores and serum level of OVA-IgE than the control group (P<0.05). There were no significant differences in the allergic symptom score and the serum level of OVA-IgE between the ADSC treatment group and the CpG-ODN treatment group (P>0.05), but these two groups had significantly lower allergic symptom scores and serum level of OVA-IgE than the allergic group and significantly higher allergic symptom scores and serum level of OVA-IgE than the control group (P<0.01). The allergic group had a significantly lower percentage of peripheral blood CD4CD25Treg cells than the control group (P<0.05). The ADSC treatment group and the CpG-ODN treatment group had a significantly higher percentage of peripheral blood CD4CD25Treg cells than the allergic group (P<0.05); there were no significant differences between these two groups or between them and the control group (P>0.05). Pathological results showed structural damage and edema in the jejunal villi, a large number of eosinophils, and lymphocyte infiltration in the allergic group, while the ADSC treatment group and the CpG-ODN treatment group had less structural damage and edema in the jejunal villi, a lower number of eosinophils, and less lymphocyte infiltration.
CONCLUSIONSADSC and non-methylated CpG-ODN have a certain effect in the treatment of food allergy and can increase the percentage of peripheral blood CD4CD25Treg cells and reduce the level of OVA-IgE. They may be associated with the induction of immune tolerance and these two treatment have comparable effects. Detailed mechanisms of action still need further investigation.
Adipose Tissue ; cytology ; Adjuvants, Immunologic ; pharmacology ; Animals ; Female ; Food Hypersensitivity ; immunology ; therapy ; Immunoglobulin E ; blood ; Mice ; Mice, Inbred BALB C ; Oligodeoxyribonucleotides ; pharmacology ; Ovalbumin ; immunology ; Stem Cell Transplantation ; T-Lymphocytes, Regulatory ; drug effects ; immunology
3.Establishment of a rat model of oral food allergy.
Qing-Ling ZHU ; Feng LI ; Jun-Li WANG ; Jing-Qiu MA ; Xiao-Yang SHENG
Chinese Journal of Contemporary Pediatrics 2016;18(8):757-761
OBJECTIVETo establish a food allergy model in Brown Norway (BN) rats by gavage of ovalbumin (OVA) without any adjuvant, and to evaluate this model.
METHODSA total of 20 male BN rats aged 3 weeks were randomly divided into allergy group and control group (n=10 each). BN rats in the allergy group were given OVA 1 mg per day by gavage, and all the rats were treated for 41 days continuously. On day 42, the rats in the allergy group were given OVA 100 mg by gavage for challenge. The rats in the control group were given normal saline of the same volume by gavage. Differences in body length, body weight, and food intake were compared between the two groups on days 7, 14, 21, 28, 35, and 42. ELISA was used to measure the serum OVA-IgE level and plasma histamine level after challenge on day 42, and the changes in rats' appearance and fecal properties were observed. The model of food allergy was considered successful when the serum OVA-IgE level in the allergy group was no less than the mean serum OVA-IgE level + 3 standard deviation in the control group.
RESULTSThere were no significant differences in body length, body weight or food intake between the allergy and control groups at all time points (P>0.05). On day 21, the control group had a significantly higher food intake than the allergy group (P<0.05). On day 42 after challenge, the allergy group showed significantly higher serum OVA-IgE and plasma histamine levels than the control group (P<0.05). The sensitization rate (rate of successful modeling) was 90%. The fecal properties showed no significant differences between the two groups.
CONCLUSIONSOVA by gavage without any adjuvant can successfully establish the model of food allergy in BN rats and has a high success rate. Food allergy induced by OVA may reduce food intake within a short period of time, but no influence on rats' body length or body weight has been observed.
Animals ; Disease Models, Animal ; Food Hypersensitivity ; etiology ; immunology ; Histamine ; blood ; Immunoglobulin E ; blood ; Male ; Ovalbumin ; immunology ; Rats ; Rats, Inbred BN
4.Effect of triggering receptor expressed on myeloid cells 2 overexpression on airway inflammation and remodeling in mice with allergic asthma.
Zhen WANG ; Jing WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(9):879-884
OBJECTIVETo investigate the effect of triggering receptor expressed on myeloid cells 2 (TREM-2) overexpression on airway inflammation and remodeling in mice with asthma.
METHODSA total of 40 BALB/c mice were randomly divided into normal control, asthma, empty vector, and TREM-2 overexpression groups (n=10 each). Ovalbumin (OVA) sensitization and challenge were performed to establish the model of asthma. The mice in the control group were given normal saline, and those in the empty vector and TREM-2 overexpression groups were transfected with adenovirus vector and TREM-2 adenovirus, respectively. RT-PCR and Western blot were used to measure the expression of TREM-2, MMP-2, MMP-9, ADAM33, and ADAM8. Bronchoalveolar lavage fluid (BALF) was collected to perform cell counting and classification. ELISA was used to measure the total serum level of IgE and the levels of cytokines in BALF.
RESULTSCompared with the control group, the asthma group showed significant reductions in the mRNA and protein expression of TREM-2 (P<0.05), a significantly increased level of Th2 cytokine (P<0.05), and significantly increased numbers of total cells and classified cells. Compared with the asthma group, the TREM-2 overexpression group showed a significantly reduced level of Th2 cytokine (P<0.05), a significantly reduced level of IgE (P<0.05), and significantly reduced numbers of total cells and classified cells (P<0.05), as well as significantly downregulated expression of the inflammatory factors and growth factors MMP-2, MMP-9, TGF-β1, ADAM8, and ADAM33 (P<0.05).
CONCLUSIONSTREM-2 overexpression significantly alleviates airway inflammation and airway remodeling in mice with asthma and may become a potential target for the prevention and treatment of childhood asthma.
Airway Remodeling ; Animals ; Asthma ; etiology ; immunology ; Cytokines ; analysis ; Female ; Membrane Glycoproteins ; genetics ; physiology ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Receptors, Immunologic ; genetics ; physiology
5.EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant.
Lei ZHU ; Fan ZHANG ; Li-Jun YANG ; Yang GE ; Qing-Fang WEI ; Yu OU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(7):541-548
		                        		
		                        			
		                        			EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization.
		                        		
		                        		
		                        		
		                        			Adjuvants, Immunologic
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cyanobacteria
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Immunity, Cellular
		                        			;
		                        		
		                        			Immunity, Humoral
		                        			;
		                        		
		                        			Immunization
		                        			;
		                        		
		                        			Interleukin-12
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Interleukin-2
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Killer Cells, Natural
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Polysaccharides
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Th1 Cells
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Th2 Cells
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
6.Effect of non-methylated CpG-ODN on serum TGF-β and immune regulation in ovalbumin-sensitized young mice.
Ben-Zhen WANG ; Cheng-Zhong ZHENG
Chinese Journal of Contemporary Pediatrics 2015;17(8):864-868
OBJECTIVETo explore the effect of non-methylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN) on serum transforming growth factor (TGF)-β and immune regulation in ovalbumin (OVA)-sensitized young mice.
METHODSThirty female BALB/c mice (2-3 weeks old) were randomly divided into control, model, and CpG-ODN intervention groups. A young mouse model of food allergy was established by OVA sensitization. Normal saline of the same volume was used for replacement in the control group. The mice in the intervention group were intraperitoneally injected with CpG-ODN solution 1 hour before every OVA sensitization. Allergic symptoms were observed and scored for each group. The jejunal tissue was histopathologically examined with hematoxylin-eosin staining. Serum OVA-IgE level was measured using ELISA. Serum concentrations of interleukin (IL)-4, interferon (IFN)-γ, and TGF-β were determined by CBA.
RESULTSAllergic symptoms were observed in the model group and the jejunal tissue showed the pathological characteristics of type I allergic reaction. The allergic symptom scores in the model and CpG-ODN intervention groups were significantly higher than in the control group (P<0.01). The serum levels of OVA-IgE, IL-4, and TGF-β were significantly higher in the model group than in the control and CpG-ODN intervention groups (P<0.05). The CpG-ODN intervention group had significantly higher serum levels of OVA-IgE, IL-4, and TGF-β than the control group (P<0.05). Compared with the control and CpG-ODN intervention groups, the model group had a significantly reduced IFN-γ level (P<0.05).
CONCLUSIONSThe serum TGF-β level is increased in the young mouse model of OVA-sensitized food allergy and is involved in the allergy mechanism. Non-methylated CpG-ODN can reduce the serum TGF-β level in sensitized young mice and play an immunoregulatory role in food allergy.
Aging ; Animals ; DNA Methylation ; Female ; Food Hypersensitivity ; drug therapy ; immunology ; Immunoglobulin E ; blood ; Interleukin-4 ; blood ; Mice ; Mice, Inbred BALB C ; Oligodeoxyribonucleotides ; pharmacology ; Ovalbumin ; immunology ; Transforming Growth Factor beta ; blood
7.The changes of microRNA in nasal mucosa after the specific immunotherapy for allergic rhinitis in mice.
Zhen'an ZHAO ; Ji DAI ; Wanjun ZHAO ; Qingyun WANG ; Zhongsheng CAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(5):457-465
		                        		
		                        			OBJECTIVE:
		                        			To explore the changes of microRNAs in nasal mucosa after the specific immunotherapy (SIT) for allergic rhinitis (AR) in mice.
		                        		
		                        			METHOD:
		                        			Female BALB/c mice, 6-8 weeks of age, were randomly divided into control group, model group and treatment group. AR model were established by intraperitoneal injection and intranasal challenge of ovalbumin and SIT was performed by inguinal subcutaneous injections. AR symptom scores were documented. The eosinophils (EOS) in the nasal mucosa were measured. Ovalbumin-specific IgE (OVA-sIgE) in the serum and expression of interferon-γ and interleukin-4 in the nasal lavage were measured by enzyme-linked immunosorbent assay meanwhile the ratio of interferon-γ and interleukin-4 was calculated. The microRNAs in the nasal mucosa were preliminary screened by microRNA gene microarray. Comparing with model group, the Fold changes of microRNA of the treatment group were ≥ 2.0 and the P < 0.05. MicroRNA target genes were predicted with GeneSpring 12.5 software. We took the intersection between genes in the signal pathway which associated with immune response,inflammation and target genes. The MEV-4-6-0 and Cytoscape_v2. 8. 2. software was applied to perform the cluster analysis and target gene regulatory networks maps.
		                        		
		                        			RESULT:
		                        			The model of AR in mice and its SIT were successful. Comparing with the model group, the Fold changes of 15 microRNAs, of which 9 microRNAs were up-regulated and 6 microRNAs were down-regulated, were ≥ 2.0 in treatment group (P < 0.05). Cluste analysis showed clearly that microRNAs in the treatment group and model group respectively aggregated in two branches. The 15 microRNAs had 5302 target genes, of which, 451 genes were related more with SIT by the intersection. One microRNA can regulate many target genes, and one gene can also be affected by many microRNAs. Their synergistic effects may be involved in the mechanism of SIT.
		                        		
		                        			CONCLUSION
		                        			The expressions of microRNAs are changed in nasal mucosa after SIT for AR in mice and we can speculate that microRNAs are involved in the process of SIT for AR. Bioinformatics methods can diminish the scope of target genes of microRNAs, which will help us studying the effect of changed microRNA on its relative target genes after SIT, and make us better understanding the mechanism of the disease and its SIT.
		                        		
		                        		
		                        		
		                        			Administration, Intranasal
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Eosinophils
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Immunoglobulin E
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Immunotherapy
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Interleukin-4
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nasal Mucosa
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			Rhinitis, Allergic
		                        			;
		                        		
		                        			therapy
		                        			
		                        		
		                        	
8.Effect of budesonide on the expression of IL-12 in animal model of minimal persistent inflammation of allergic rhinitis in rats.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(3):270-274
		                        		
		                        			OBJECTIVE:
		                        			To investigate the influence of budesonide on animal model of minimal persistent inflammation (MPI) of allergic rhinitis in rats and to investigate the changes of interleukin-12 (IL-12) in nasal mucosa.
		                        		
		                        			METHOD:
		                        			Sixty Sprague-Dawley (SD) rats were randomly divided into four groups: group A (allergic rhinitis group), B (experimental group), C (MPI model group) and D (bland group) respectively, with fifteen animals in each group. Rats from group A,B and C were sensitized intraperitoneally by injection of suspension of ovalbumin (OVA) and aluminum hydroxide in 0.9% physiological saline. Then, repeated local booster sensitization with different concentration of OVA suspension (1% and 0.01%) or physiological saline into the nasal cavity of those rats were performed. For group D, physiological saline was used only. From 36th day, group B were given budesonide treatment for three weeks. A, C and D group were given normal saline nasal spray. Symptoms (sneezing) of rats after antigen challenge were observed and the infiltration of eosinophils (EOS) together with the expression of intercellular adhesion molecule 1 (ICAM-1) and IL-12 in the nasal epithelial cells were also examined.
		                        		
		                        			RESULT:
		                        			When challenged with 1% OVA, the sneezing number of rats in group B was increased markedly than that in group D (P < 0.05). However, there was no difference between group B, A and C (P > 0.05). When challenged with 0.01% OVA and given budesonide, the symptom of sneezing almost disappeared in group B just like that in group D and there was no difference between the two groups (P > 0.05). Besides, there was still more EOS infiltrated in the nasal mucosa of rats in group C than that in group D (P < 0.05). There was no expression of ICAM-1 in nasal epithelium of rats in group D, nevertheless, ICAM-1 was found mildly expressed in group C. IL-12 expression was significantly increased compared with group A and group C, and was no significantly difference compared with bland group (P > 0.05).
		                        		
		                        			CONCLUSION
		                        			Budesonide significantly inhibited the late reaction of animal model of minimal persistent inflammation (MPI) of allergic rhinitis in rats and increase the expression of IL-12 in MPI model.
		                        		
		                        		
		                        		
		                        			Allergens
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Budesonide
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Eosinophils
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-12
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leukocyte Count
		                        			;
		                        		
		                        			Nasal Mucosa
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Rhinitis, Allergic
		                        			;
		                        		
		                        			drug therapy
		                        			
		                        		
		                        	
9.Establishment and evaluation of the SD rat allergic rhinitis model.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(15):1372-1374
		                        		
		                        			OBJECTIVE:
		                        			To investigate method established and system evaluated in the model of SD rat with AR.
		                        		
		                        			METHOD:
		                        			To establish AR model of SD rats by ovalbumin (OVA), 20 cases of SD rats were randomly divided into two groups, namely control group (10 cases) and AR group (10 cases). AR models were sensitized and challenged by OVA. Control group were used with normal saline instead of OVA. The score of pathology and praxiology were observed when the SD rats in AR group appeared typical symptom of allergic rhinitis, and levels of IL-4, IFN-γ, IgE in the serum were examined by ELISA. According to the behavioral score, nasal histology and content of IL-4, IFN-γ, IgE of serum, Rat allergic rhinitis model were judged successfully established or not.
		                        		
		                        			RESULT:
		                        			Behavioral scores were significantly increased in OVA-challenged rats compared with the control group, P<0.05. Nasal epithelial goblet cells, eosinophils and lymphocytes in nasal mucosa in the AR rats exhibited obvious increase relative to the control group. IL-4, IgE levels in the AR rat exhibited obvious increase relative to control group while INF-γ levels exhibited obvious reduction (P<0.05).
		                        		
		                        			CONCLUSION
		                        			The allergic rhinitis models in SD rat by OVA were successfully established. The levels of IgE, INF-γ and IL-4 in Serum can be used as objective evaluation of animal models of allergic rhinitis established successfully or not.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Eosinophils
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Goblet Cells
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Immunoglobulin E
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Interleukin-4
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Nasal Mucosa
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Rhinitis, Allergic
		                        			;
		                        		
		                        			physiopathology
		                        			
		                        		
		                        	
10.Effect of dexamethasone on osteopontin expression in the lung tissue of asthmatic mice.
Hai-Hui SUN ; Yun-Xiao SHANG ; Nan YANG
Chinese Journal of Contemporary Pediatrics 2014;16(12):1265-1270
OBJECTIVETo study the correlation between airway inflammation and osteopontin (OPN) level in the lung tissue, and to study the effect of dexamethasone (DXM) on OPN expression.
METHODSFifty mice were randomly divided into 5 groups: normal control, ovalbumin (OVA)-challenged asthma groups (OVA inhalation for 1 week or 2 weeks) and DXM-treated asthma groups (DXM treatment for 1 week or 2 weeks). The mice were sensitized and challenged with OVA to prepare mouse model of acute asthma. Alterations of airway inflammation were observed by haematoxylin-eosin staining. Serum level of OVA-sIgE was evaluated using ELISA. OPN expression in the lung tissue was located and measured by immunohistochemistry and Western blot respectively. OPN mRNA level in the lung tissue was detected by real-time PCR.
RESULTSThe asthma groups showed more pathological changes in the airway than the normal control and the DXM-treated groups. Compared with the OVA-challenged 1 week group, the pathological alterations increased in the OVA-challenged 2 weeks group. The level of OVA-sIgE in serum increased in the asthma groups compared with the control and the DXM groups (P<0.01). Serum OVA-sIgE sevel increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01). OPN protein and mRNA levels were significantly raised in the asthma groups compared with the normal control and the DXM groups (P<0.01), and both levels increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01).
CONCLUSIONSThe increased OPN expression in the lung tissue is associated with more severe airway inflammation in asthmatic mice, suggesting that OPN may play an important role in the pathogenesis of asthma. DXM can alleviate airway inflammation possibly by inhibiting OPN production.
Animals ; Asthma ; drug therapy ; metabolism ; pathology ; Dexamethasone ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Immunoglobulin E ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; Osteopontin ; analysis ; genetics ; physiology ; Ovalbumin ; immunology
            
Result Analysis
Print
Save
E-mail