1.Logistics regression analysis of plastic bronchitis in children with mycoplasma pneumoniae infection
Fen OU ; Taoyi YANG ; Guanglei CHEN ; Hongxia LI ; Pingping LI
Journal of Public Health and Preventive Medicine 2025;36(1):160-163
Objective To analyze the influencing factors of plastic bronchitis in children with Mycoplasma pneumoniae infection and put forward targeted prevention suggestions. Methods The clinical data of children with Mycoplasma pneumoniae infection who were admitted to Chengdu Third People's Hospital from September 2022 to February 2024 were retrospectively analyzed . According to whether plastic bronchitis occurred, they were divided into plastic group (n=118) and non-plastic group (n=184), and the differences between the two groups were compared and analyzed. Univariate and multivariate logistics regression analysis equations were used to analyze the independent influencing factors of plastic bronchitis in children with mycoplasma pneumoniae infection. Results Among the 302 children with Mycoplasma pneumoniae infection , 118 cases were diagnosed with plastic bronchitis. Analysis showed that the children’s age, duration of fever, hospital stay, pleural effusion rate, number of bronchoscopic lavage, allergy history, endoscopic mucosal erosion rate, WBC, NE%, LY%, CRP, LDH, PCT and D-D were the single factors influencing the occurrence of plastic bronchitis in children with mycoplasma pneumoniae infection. Binary logistics regression analysis revealed that age (OR=2.137, P=0.033, 95% CI: 1.132-16.603), allergy history (OR=3.028, P=0.014, 95% CI: 1.261-864), NE% (OR=2.395, P=0.031, 95% CI: 1.087-5.274), CRP (OR=3.864, P=0.004, 95% CI: 1.563-3.864), PCT (OR=4.125, P=0.001, 95% CI: 1.793-3.864), and D-D (OR=3.920, P=0.002, 95% CI: 1.632-3.864) were independent risk factors for plastic bronchitis in children with mycoplasma pneumoniae infection (P<0.05). Conclusion Age, allergy history, NE%, CRP, PCT and D-D are independent risk factors for plastic bronchitis in children with mycoplasma pneumoniae infection . It is necessary to take clinical intervention measures to reduce the occurrence risk.
2.Screening of biomarkers for fibromyalgia syndrome and analysis of immune infiltration
Yani LIU ; Jinghuan YANG ; Huihui LU ; Yufang YI ; Zhixiang LI ; Yangfu OU ; Jingli WU ; Bing WEI
Chinese Journal of Tissue Engineering Research 2025;29(5):1091-1100
BACKGROUND:Fibromyalgia syndrome,as a common rheumatic disease,is related to central sensitization and immune abnormalities.However,the specific mechanism has not been elucidated,and there is a lack of specific diagnostic markers.Exploring the possible pathogenesis of this disease has important clinical significance. OBJECTIVE:To screen the potential diagnostic marker genes of fibromyalgia syndrome and analyze the possible immune infiltration characteristics based on bioinformatics methods,such as weighted gene co-expression network analysis(WGCNA),and machine learning. METHODS:Gene expression profiles in peripheral serum of fibromyalgia syndrome patients and healthy controls were obtained from the gene expression omnibus(GEO)database.The differentially co-expressed genes were screened in the expression profile by differential analysis and WGCNA analysis.Least absolute shrinkage and selection operator(LASSO)and support vector machine-recursive feature elimination(SVM-RFE)machine learning algorithm were further used to identify hub biomarkers,and draw receiver operating characteristic curve(ROC)to evaluate the accuracy of diagnosing fibromyalgia syndrome.Finally,single sample gene set enrichment analysis(ssGSEA)and gene set enrichment analysis(GSEA)were used to evaluate the immune cell infiltration and pathway enrichment in patients with fibromyalgia syndrome. RESULTS AND CONCLUSION:Eight down-regulated differentially expressed genes(DEGs)were obtained after differential analysis of the GSE67311 dataset according to the conditions of log2|(FC)|>0 and P<0.05.After WGCNA analysis,497 genes were included in the module(MEdarkviolet)with the highest positive correlation(r=0.22,P=0.04),and 19 genes were included in the module(MEsalmon2)with the highest negative correlation(r=-0.41,P=6×10-5).After intersecting DEGs and the module genes of WGCNA,seven genes were obtained.Four genes were screened out by LASSO regression algorithm and five genes were screened out by SVM-RFE machine learning algorithm.After the intersection of the two,three core genes were identified,which were germinal center associated signaling and motility like,integrin beta-8,and carboxypeptidase A3.The areas under the ROC curve of the three core genes were 0.744,0.739,and 0.734,respectively,indicating that they have good diagnostic value and can be used as biomarkers for fibromyalgia syndrome.The results of immune infiltration analysis showed that memory B cells,CD56 bright NK cells,and mast cells were significantly down-regulated in patients with fibromyalgia syndrome compared with the control group(P<0.05),and were significantly positively correlated with the above three biomarkers(P<0.05).The enrichment analysis suggested that there were nine fibromyalgia syndrome enrichment pathways,mainly related to olfactory transduction pathway,neuroactive ligand-receptor interaction,and infection pathway.The above results showed that the occurrence and development of fibromyalgia syndrome are related to the involvement of multiple genes,abnormal immune regulation,and multiple pathways imbalance.However,the interactions between these genes and immune cells,as well as their relationships with various pathways need to be further investigated.
3.Improvement of myocardial injury by traditional Chinese medicine:mitochondrial calcium homeostasis mediates macrophage autophagy and pyroptosis pathway
Lingyun LIU ; Guixin HE ; Weibin QIN ; Hui SONG ; Liwen ZHANG ; Weizhi TANG ; Feifei YANG ; Ziyi ZHU ; Yangbin OU
Chinese Journal of Tissue Engineering Research 2025;29(6):1276-1284
BACKGROUND:The repair process of myocardial injury involves complex cellular and molecular mechanisms,especially mitochondrial calcium homeostasis,macrophage autophagy and pyroptosis pathways.Traditional Chinese medicine(TCM)has shown significant clinical efficacy in improving myocardial injury,but its mechanism of action needs to be thoroughly investigated. OBJECTIVE:To investigate the role of mitochondrial calcium homeostasis-mediated macrophage autophagy and pyroptosis pathways in myocardial injury,and to summarize the progress of TCM in this field. METHODS:A computerized search was performed for relevant literature from the database inception to March 2024 in the Web of Science,PubMed and CNKI.The search terms were"mitochondrial calcium homeostasis,macrophage autophagy,macrophage pyroptosis,traditional Chinese medicine,myocardial injury,myocardial injury reperfusion"in Chinese and English.Through literature review,we analyzed the relationship between mitochondrial calcium homeostasis and macrophage autophagy and pyroptosis,explored the mechanism of their roles in myocardial injury,and summarized the pathways of multi-targeted,multi-pathway effects of TCM. RESULTS AND CONCLUSION:The maintenance of mitochondrial calcium homeostasis has been found to be closely related to the normal function of cardiomyocytes.Macrophages can participate in the repair process of myocardial injury through autophagy and pyroptosis pathways.Autophagy contributes to cell clearance and regulation of inflammatory response,while pyroptosis affects myocardial repair by releasing inflammatory factors.TCM regulates mitochondrial calcium homeostasis and macrophage function through multiple mechanisms.For example,astragalosid regulates calcium homeostasis by lowering mitochondrial membrane potential and inhibiting cytochrome C,and epimedium glycoside plays a role in reducing β-amyloid deposition.In addition,herbal compounds and single drugs promote myocardial repair by activating or inhibiting specific signaling pathways,such as PI3K/AKT and nuclear factor-κB signaling pathways.Future studies should focus on the interactions between mitochondrial calcium homeostasis,autophagy and pyroptosis pathways,as well as how TCM can exert therapeutic effects through these pathways to provide new strategies and drugs for the treatment of myocardial injury.
4.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
9.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
10.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.


Result Analysis
Print
Save
E-mail