1.Screening of biomarkers for fibromyalgia syndrome and analysis of immune infiltration
Yani LIU ; Jinghuan YANG ; Huihui LU ; Yufang YI ; Zhixiang LI ; Yangfu OU ; Jingli WU ; Bing WEI
Chinese Journal of Tissue Engineering Research 2025;29(5):1091-1100
BACKGROUND:Fibromyalgia syndrome,as a common rheumatic disease,is related to central sensitization and immune abnormalities.However,the specific mechanism has not been elucidated,and there is a lack of specific diagnostic markers.Exploring the possible pathogenesis of this disease has important clinical significance. OBJECTIVE:To screen the potential diagnostic marker genes of fibromyalgia syndrome and analyze the possible immune infiltration characteristics based on bioinformatics methods,such as weighted gene co-expression network analysis(WGCNA),and machine learning. METHODS:Gene expression profiles in peripheral serum of fibromyalgia syndrome patients and healthy controls were obtained from the gene expression omnibus(GEO)database.The differentially co-expressed genes were screened in the expression profile by differential analysis and WGCNA analysis.Least absolute shrinkage and selection operator(LASSO)and support vector machine-recursive feature elimination(SVM-RFE)machine learning algorithm were further used to identify hub biomarkers,and draw receiver operating characteristic curve(ROC)to evaluate the accuracy of diagnosing fibromyalgia syndrome.Finally,single sample gene set enrichment analysis(ssGSEA)and gene set enrichment analysis(GSEA)were used to evaluate the immune cell infiltration and pathway enrichment in patients with fibromyalgia syndrome. RESULTS AND CONCLUSION:Eight down-regulated differentially expressed genes(DEGs)were obtained after differential analysis of the GSE67311 dataset according to the conditions of log2|(FC)|>0 and P<0.05.After WGCNA analysis,497 genes were included in the module(MEdarkviolet)with the highest positive correlation(r=0.22,P=0.04),and 19 genes were included in the module(MEsalmon2)with the highest negative correlation(r=-0.41,P=6×10-5).After intersecting DEGs and the module genes of WGCNA,seven genes were obtained.Four genes were screened out by LASSO regression algorithm and five genes were screened out by SVM-RFE machine learning algorithm.After the intersection of the two,three core genes were identified,which were germinal center associated signaling and motility like,integrin beta-8,and carboxypeptidase A3.The areas under the ROC curve of the three core genes were 0.744,0.739,and 0.734,respectively,indicating that they have good diagnostic value and can be used as biomarkers for fibromyalgia syndrome.The results of immune infiltration analysis showed that memory B cells,CD56 bright NK cells,and mast cells were significantly down-regulated in patients with fibromyalgia syndrome compared with the control group(P<0.05),and were significantly positively correlated with the above three biomarkers(P<0.05).The enrichment analysis suggested that there were nine fibromyalgia syndrome enrichment pathways,mainly related to olfactory transduction pathway,neuroactive ligand-receptor interaction,and infection pathway.The above results showed that the occurrence and development of fibromyalgia syndrome are related to the involvement of multiple genes,abnormal immune regulation,and multiple pathways imbalance.However,the interactions between these genes and immune cells,as well as their relationships with various pathways need to be further investigated.
2.Research on multi antigen extended matching transfusion in RhCE alloantibody positive patients with blood diseases
Pin YI ; Mingming WANG ; Yi ZHU ; Xintang DANG ; Ziyu OU ; Fan WU ; Chaopeng SHAO ; Changlin WU
Chinese Journal of Blood Transfusion 2025;38(5):678-683
Objective: To analyze the changes in homologous immunity after RhCE-matched transfusion in positive patients with RhCE blood group antibodies, and to provide precise transfusion strategies for chronic anemia patients. Methods: Patients with chronic anemia in our hospital from January 2020 to March 2024 (continuously receiving blood transfusions for more than 6 months) were enrolled, and 63 cases of unexpected antibody screening positive and identified as RhCE blood group antibodies were selected as the research subjects. The changes in unexpected antibody yield rate after ABO and RhCcDEe isotype blood transfusion were observed. Patients with MNS, Kidd, or Lewis blood group antibodies were screened for corresponding negative donors using monoclonal antibodies for extended typing transfusion based on RhCcEe typing, and the changes in unexpected antibody yield rate after transfusion were observed. Blood group genotyping was performed when serological techniques failed to resolve discrepancies or detect abnormal antigen expression. Results: After RhCcDEe-matched transfusions, RhCE antibodies disappeared in 62 patients, while 1 patient developed anti-Ce. The latter did not develop blood type isotype immunity after receiving RhccEE donor blood. Among the 62 patients, 9 developed unexpected antibodies against other systems: anti-M (4 cases), anti-Mur (2), anti-S (1), anti-Jka (1), and anti-Lea (1). No additional alloimmunization occurred after extended antigen-matched transfusions. A patient with serologically weak e phenotype was genotyped as DCe/DcE, with gene sequencing revealing an 827C>A mutation in exon 6 of the RHCE gene, forming the RHCE
01.31 allele. Conclusion: Precise transfusion strategies incorporating RhCE, MNS, Kidd, and Lewis blood group antigen typing can reduce the probability of blood group homologous immunity. RhCE complex antibodies and RhCE variants pose difficulties for clinical RhCE typing transfusion, which can be addressed through cross-matching and genetic analysis.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Clinical application of exempting anti-D monitoring in pregnant women with Asian-type DEL
Pin YI ; Ziyu OU ; Xiaoxiao SUN ; Mingming WANG ; Changlin WU ; Chaopeng SHAO
Chinese Journal of Blood Transfusion 2025;38(6):766-771
Objective: To evaluate the feasibility of exempting Asian-type DEL pregnant women from anti-D monitoring and RhD immunoglobulin prophylaxis injections by comparing and analyzing the clinical incidence of anti-D alloimmunization between Asian-type DEL pregnant women and true RhD-negative pregnant women. Methods: A total of 165 pregnant women who were initially screened as RhD negative by the saline method and received medical treatment in our hospital from December 2022 to August 2024 were collected as the research subjects. Absorption and elution tests, DEL genotyping, and gene sequencing were used to divide the pregnant women into the Asian-type DEL group and the true negative group. After obtaining informed consent, the following clinical management plan was implemented for pregnant women with Asian-type DEL: exemption from routine anti-D antibody detection, exemption from RhD immunoglobulin prophylaxis, and transfusion of RhD-positive red blood cells. Blood samples of newborns were sent for examination of hemolytic disease of the fetus and newborn (HDFN). The routine management plan was implemented for true negative pregnant women. The incidence of alloimmunization and HDFN was comparatively analyzed between the two groups. Results: Among 165 initially screened RhD negative pregnant women, serological testing and genotyping confirmed 42 as Asian-type DEL, 9 as D variant, and 114 as true negative. Among 42 pregnant women with Asian-type DEL, 3 cases tested positive for HDFN due to receiving RhD immunoglobulin prophylaxis injection. The remaining 39 cases were exempted from anti-D testing after being fully informed of the risk, and did not receive RhD immunoglobulin prophylaxis. The HDFN tests were all negative. In the true negative group, anti-D antibodies were detected in 20 cases, of which 6 cases tested positive for HDFN. A pregnant woman with Asian -type DEL did not show RhD homologous immune response after receiving 2 units of RhD positive red blood cells. Statistical analysis revealed a significantly lower risk of anti-D alloimmunization in Asian-type DEL carriers compared to true D-negative pregnant women (P<0.05). Conclusion: Pregnant women with Asian-type DEL can be exempted from routine anti-D antibody testing and do not require routine RhD immunoglobulin prophylaxis injections.
9.Relationship between stressors and job burnout: Moderating role of job well-being
Jie WU ; Fengmin CHENG ; Ruotong YI ; Weiqian YU ; Chunyan LIU ; Mengyu OU
Journal of Environmental and Occupational Medicine 2025;42(7):833-839
Background Enhancing the sense of honor and belonging among medical staff is a key component of establishing a modern hospital management system. Compared to medical staff at general hospitals, medical staff at oncology hospitals are more prone to job burnout, yet few studies in China have focused on job burnout among employees in oncology hospitals. Objective To propose a hypothetical model in which job well-being moderates the relationship between stressors and occupational burnout, to explore how stressors influence burnout and potential moderating role of job well-being, and to provide better understanding of job burnout and motivate employees based on the double-edge sword effect of stressors. Methods A cross-sectional survey was conducted in May 2022 at a tertiary oncology specialty hospital in Chongqing, China. A total of 1 898 medical staff were recruited. Data were collectedthrough four scales including a general information questionnaire, Maslach Burnout Inventory-Human Service Survey, Work Stressor Scale, and Occupational Well-being Scale for Medical Staff. Independent sample t-tests and one-way ANOVA were used for univariate comparisons of job burnout. Pearson correlation analysis was employed to examine the relationships between job burnout, stressors, and job well-being. Hierarchical linear regression was conducted to identify factors influencing job burnout and to examine potential moderating role of job well-being in the relationship between stressors and job burnout. Results A total of 2 123 questionnaires were distributed, with 1 898 valid responses, yielding an effective response rate of 89.4%. The prevalence of job burnout was 60.1%. The correlation coefficient was 0.717 (P<0.001) between stressors and burnout, −0.784 (P<0.05) between job well-being and burnout, and −0.744 (P<0.001) between stressors and job well-being. The quadratic stressors showed a statistically significant effect on burnout (β=0.404, P<0.01). Job well-being positively moderated the relationship between the linear stressors and burnout (β=1.289, P<0.001) and negatively moderated the relationship between the quadratic stressors and job burnout (β=−0.571, P<0.01), explaining 7.1% of the variance. Conclusion Job burnout prevalence is relatively high among employees in oncology hospitals. There is a curvilinear relationship between stressors and job burnout, with job well-being moderating this relationship. From a practical perspective, it is recommended to establish a tiered stress alert system to monitor employees’ stress levels and prevent prolonged exposure to high-pressure conditions. Additionally, improving employees’ job well-being through institutional incentives and developmental support can enhance its moderating role in mitigating the adverse effects of stressors on job burnout. Meanwhile, fostering coordinated responses between organizations and individuals is crucial for strengthening mental health management systems, thereby supporting a healthy, stable, and sustainable development of the healthcare workforce.
10.A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance.
Lei SUN ; Arabella H WAN ; Shijia YAN ; Ruonian LIU ; Jiarui LI ; Zhuolong ZHOU ; Ruirui WU ; Dongshi CHEN ; Xianzhang BU ; Jingxing OU ; Kai LI ; Xiongbin LU ; Guohui WAN ; Zunfu KE
Acta Pharmaceutica Sinica B 2024;14(1):223-240
Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.

Result Analysis
Print
Save
E-mail