1.Regulatory function and mechanism of autophagy on osteoclast.
Jian-Sen MIAO ; Xiang-Yang WANG ; Hai-Ming JIN
China Journal of Orthopaedics and Traumatology 2023;36(4):357-363
Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.
Humans
;
Osteoclasts
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
NF-kappa B/metabolism*
;
Autophagy
;
Osteoporosis
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
RANK Ligand/metabolism*
2.Advances on pentraxin 3 in osteoporosis and fracture healing.
Jia-Jun LU ; Yan SUN ; Xuan ZHANG ; Qiao-Qi WANG ; Zhou-Yi XIANG ; Yi-Qing LING ; Pei-Jian TONG ; Tao-Tao XU
China Journal of Orthopaedics and Traumatology 2023;36(4):393-398
Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.
Animals
;
Male
;
Mice
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
Fracture Healing/genetics*
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Osteoporosis/genetics*
;
Phosphatidylinositol 3-Kinases/pharmacology*
3.miR-877-3p causes osteoporosis in mice by inhibiting MCP-1 secretion from mouse bone marrow mesenchymal stem cells and the migration and apoptosis of T lymphocytes.
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):481-487
Objective To investigate the effects of miR-877-3p on migration and apoptotic T lymphocytes of bone mesenchymal stem cells (BMSCs). Methods The model of osteoporosis induced by bilateral ovariectomy (OVX) and sham operation was established. At 8 weeks after operation, the bone parameters of the two groups were detected by micro-CT. The levels of monocyte chemotactic protein 1(MCP-1) in BMSCs were detected by ELISA. BMSC in OVX group and sham group were co-cultured with T lymphocytes, respectively. The migration ability of T lymphocytes in the two groups was observed by TranswellTM assay with PKH26 staining and apoptosis of T lymphocytes were detected by flow cytometry. Reverse transcription PCR was used to detect the expression of miR-877-3p in BMSCs. miR-877-3p was overexpressed or down-regulated by cell transfection. The level of MCP-1 secreted by BMSCs in each group was detected by ELISA. The migration and apoptosis of T lymphocytes were detected by the above methods. Results The number of trabecular bone and bone mineral density in OVX group were lower than those in sham group. The levels of MCP-1 secretion, chemotactic and apoptotic T lymphocyte ability of BMSCs in OVX group were also lower than those in sham group. The expression level of miR-877-3p in BMSC in OVX group was higher than that in sham group. After overexpression of BMSC miR-877-3p, the levels of MCP-1 secreted from BMSCs, and apoptotic T lymphocytes decreased, while the results were opposite after down-regulation of miR-877-3p. Conclusion miR-877-3p may be one of the causes of osteoporosis by inhibiting MCP-1 secretion of BMSCs and the migration and apoptosis of T lymphocytes.
Animals
;
Female
;
Mice
;
Apoptosis/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Differentiation
;
Chemokine CCL2/metabolism*
;
Mesenchymal Stem Cells/metabolism*
;
MicroRNAs/metabolism*
;
Osteogenesis
;
Osteoporosis/genetics*
;
T-Lymphocytes/metabolism*
4.Experimental study of proteasome inhibitor MG132 up-regulates Wnt/β-catenin signaling pathway to improve osteoporosis.
Rong-Xue SHAO ; Liang ZHANG ; He-Jie YANG ; Zhi-Jing ZHANG ; Jun YUE ; Hao PAN ; Hui ZHOU ; Ren-Fu QUAN
China Journal of Orthopaedics and Traumatology 2022;35(1):59-64
OBJECTIVE:
To explore the mechanism of proteasome inhibitor MG132 in improving osteoporosis.
METHODS:
Total of 32 female SD rats, weighing 220 to 250 g and 8 weeks old, were selected. They were randomly divided into 4 groups(n=8). Rats of group A and group B were cut off ovaris on both sides to make model of osteoporosis, and then they were given proteasome inhibitors MG132 and dimethyl sufoxide (DMSO) respectively. Group C was a sham group and rats were given MG132. Group D was a normal group and rats were given MG132 too. The rats were killed in batches at 6 and 12 weeks after administration, and the femoral neck tissues were obtained. Relevant data were analyzed, such as pathomorphological observation, micro-CT analysis, detection of 20S proteasome activity in tissues, and expression of Wnt and β-catenin.
RESULTS:
Morphological observation showed that the trabecular were slightly thinner, reticulated, and occasionally interrupted in group A, while the trabecular were obviously thinner and discontinuous in group B. And the trabecular were intact and arranged reticulated in group C and D. The analysis results of bone mineral density(BMD), bone surface(BS), bone volume/total volume(BV/TV) and trabecular thickness(Tb.Th) showed that group B was worse than other groups in all parameters at different time points(P<0.05), and group A was worse than group C and group D in BS(P<0.05), there was no significant difference in all parameters between group C and group D. RFU value of 20S proteasome in group B was significantly higher than that in other groups(P<0.05). According to the results of Western blot, the gray values of Wnt protein and β-catenin protein in group A were significantly higher than those in other groups (P<0.05).
CONCLUSION
MG-132, a ubiquitin proteasome inhibitor, can regulate Wnt/β-catenin signaling pathway by inhibiting the degradation of β-catenin protein, and delaying the occurrence and development of osteoporosis.
Animals
;
Bone Density
;
Female
;
Leupeptins
;
Osteoporosis/drug therapy*
;
Proteasome Inhibitors/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway
;
beta Catenin/metabolism*
5.Efficacy and mechanism of low glycoside from Epimedii Folium flavonoids on retinoic acid-induced osteoporosis in rats.
Yu-Zhi MAO ; Jing-Qi ZENG ; Bing YANG ; Ya-Ping CHEN ; Yan-Jun YANG ; Tian-Hao QI ; Xiao-Bin JIA ; Liang FENG
China Journal of Chinese Materia Medica 2022;47(16):4446-4453
In this study, the secondary osteoporosis model was induced by oral administration of retinoic acid for two weeks in SD male rats. The efficacy and mechanism of LG on secondary osteoporosis in rats were explored through the bone morphogenetic protein 2(BMP-2)/Runt-related transcription factor 2(Runx2)/Osterix signaling pathway. With Xianling Gubao Capsules(XLGB) as the positive control, three dose groups of low glycoside from Epimedii Folium flavonoids(LG), i.e., low-dose group(LG-L), medium-dose group(LG-M), and high-dose group(LG-H), were set up. After modeling, the rats in each group were treated correspondingly by gavage for eight weeks. The action target of LG in the treatment of secondary osteoporosis in rats was analyzed by measuring the body weight and the organ indexes of rats including heart index and testis index. The efficacy of LG was characterized by the pathological changes of the femur, the microstructural parameters of the trabecular bone, and the biomechanical properties of femoral tissues in rats. The mechanism of LG was explored by measuring the relevant biochemical indexes and the changes in BMP-2, Runx2, and Osterix content in rats with secondary osteoporosis. The results showed that the action target of LG in the treatment of secondary osteoporosis in rats was the testis. LG can improve the bone loss of the femur, increase the number and thickness of the trabecular bone, reduce the porosity and separation of the trabecular bone, potentiate the resistance of bone to deformation and destruction, up-regulate the serum content of Ca, P, aminoterminal propeptide of type Ⅰ procollagen(PINP), and osteocalcin(OC), promote bone matrix calcification and the expression of BMP-2, Runx2, and Osterix proteins, and accelerate bone formation, thereby reducing the risk of fractures, and ultimately exerting anti-secondary osteoporosis efficacy.
Animals
;
Bone Density
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Drugs, Chinese Herbal
;
Flavonoids/therapeutic use*
;
Glycosides/therapeutic use*
;
Male
;
Osteoporosis/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Tretinoin/adverse effects*
6.Associations between trunk-to-peripheral fat ratio and cardiometabolic risk factors in elderly Japanese men: baseline data from the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study.
Katsuyasu KOUDA ; Yuki FUJITA ; Kumiko OHARA ; Takahiro TACHIKI ; Junko TAMAKI ; Akiko YURA ; Jong-Seong MOON ; Etsuko KAJITA ; Kazuhiro UENISHI ; Masayuki IKI
Environmental Health and Preventive Medicine 2021;26(1):35-35
BACKGROUND:
Body mass-independent parameters might be more appropriate for assessing cardiometabolic abnormalities than weight-dependent indices in Asians who have relatively high visceral adiposity but low body fat. Dual-energy X-ray absorptiometry (DXA)-measured trunk-to-peripheral fat ratio is one such body mass-independent index. However, there are no reports on relationships between DXA-measured regional fat ratio and cardiometabolic risk factors targeting elderly Asian men.
METHODS:
We analyzed cross-sectional data of 597 elderly men who participated in the baseline survey of the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study, a community-based single-center prospective cohort study conducted in Japan. Whole-body fat and regional fat were measured with a DXA scanner. Trunk-to-appendicular fat ratio (TAR) was calculated as trunk fat divided by appendicular fat (sum of arm and leg fat), and trunk-to-leg fat ratio (TLR) as trunk fat divided by leg fat.
RESULTS:
Both TAR and TLR in the group of men who used ≥ 1 medication for hypertension, dyslipidemia, or diabetes ("user group"; N = 347) were significantly larger than those who did not use such medication ("non-user group"; N = 250) (P < 0.05). After adjusting for potential confounding factors including whole-body fat, both TAR and TLR were significantly associated with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, fasting serum insulin, and the insulin resistance index in the non-user group and non-overweight men in the non-user group (N = 199).
CONCLUSION
The trunk-to-peripheral fat ratio was associated with cardiometabolic risk factors independently of whole-body fat mass. Parameters of the fat ratio may be useful for assessing cardiometabolic risk factors, particularly in underweight to normal-weight populations.
Absorptiometry, Photon
;
Adiposity/physiology*
;
Aged
;
Aged, 80 and over
;
Biomarkers/metabolism*
;
Cardiometabolic Risk Factors
;
Cross-Sectional Studies
;
Humans
;
Intra-Abdominal Fat/diagnostic imaging*
;
Japan
;
Male
;
Osteoporosis/etiology*
;
Prospective Studies
;
Risk Assessment
;
Risk Factors
;
Thorax/diagnostic imaging*
7.Efficacy of weight adjusted bone mineral content in osteoporosis diagnosis in Chinese female population.
Ting-Ting LIU ; Xiao-Dan LI ; Wen-Zhi WANG ; Jian-Gao ZHANG ; Ding-Zhuo YANG
Chinese Medical Journal 2019;132(7):772-781
BACKGROUND:
Areal bone mineral density (aBMD) applied for osteoporosis diagnosis unavoidably results in the missingdiagnosis in patients with large bones and misdiagnosis in those with small bones. Therefore, we try to find a new adjusted index of bone mineral content (BMC) to make up shortcomings of aBMD in osteoporosis diagnosis.
METHODS:
In this multi-center epidemiological study, BMC and aBMD of lumbar spines (n = 5510) and proximal femurs (n = 4710) were measured with dual energy X-ray absorptiometry (DXA). We analyzed the correlation between the bone mass and body weight in all subjects including four age groups (<19 years, 20-39 years, 40-49 years, >50 years). And then the body weight was used for standardizing BMC (named wBMC) and applied for the epidemiological analysis of osteoporosis.
RESULTS:
The correlation of body weight and BMC is 0.839 to 0.931 of lumbar vertebra 1-4 (L1-4), and 0.71 to 0.95 of femoral neck in different age groups. When aBMD was applied for diagnosing osteoporosis, the prevalence was 7.55%, 16.39%, and 25.83% in patients with a high, intermediate, and low body weight respectively. However, the prevalence was 21.8%, 18.03%, and 11.64% by wBMC applied for diagnosing osteoporosis. Moreover, the prevalence of osteoporosis increased by 3.76% by wBMC with the body weight increased by 5 kg. The prevalence decreased by 1.94% when the body weight decreased by 5 kg.
CONCLUSIONS
wBMC can reduce the missed diagnosis in patients with large body weight and reduce misdiagnosis in those with small body weight. Including children, wBMC may be feasible for osteoporosis diagnosis individuals at any age.
Absorptiometry, Photon
;
Adult
;
Age Factors
;
Body Weight
;
physiology
;
Bone Density
;
physiology
;
Female
;
Femur Neck
;
diagnostic imaging
;
metabolism
;
Humans
;
Lumbar Vertebrae
;
diagnostic imaging
;
metabolism
;
Middle Aged
;
Osteoporosis
;
diagnostic imaging
;
metabolism
;
Prevalence
;
Young Adult
8.Impact of interleukin-6 gene polymorphisms and its interaction with obesity on osteoporosis risk in Chinese postmenopausal women.
Ya-Feng JI ; Xuesheng JIANG ; Wei LI ; Xingtao GE
Environmental Health and Preventive Medicine 2019;24(1):48-48
AIMS:
To investigate the association of four single-nucleotide polymorphisms (SNPs) of the IL-6 gene with osteoporosis (OST) susceptibility.
METHODS:
PCR restriction fragment length polymorphism (PCR-RFLP) was carried out for SNPs detection. Generalized multifactor dimensionality reduction (GMDR) model and logistic regression model were used to examine the interaction between SNP and obesity on OST.
RESULTS:
Logistic regression model revealed that G allele of rs1800796 and the T allele of rs2069849 were associated with increased OST risk, compared to those with wild genotype. However, no significant correlations were found when analyzing the association of rs1800795 and rs1554606 with OST risk. GMDR analysis suggested that the interaction model composed of the rs1800796 and obesity was the best model with statistical significance (P value from sign test [P] = 0.012), indicating a potential gene-environment interaction between rs1800796 and obesity. Overall, the two-locus models had a cross-validation consistency of 10/10 and had the testing accuracy of 0.641. We also conducted stratified analysis for rs1800796 genotype and obesity, and found that obese subjects with CG or GG genotype have the highest OST risk, compared to subjects with CC genotype, and normal BMI OR (95% CI) = 2.21 (1.52-3.49), after adjustment for age, smoke, and alcohol consumption status.
CONCLUSIONS
Our results suggested that the C allele of rs1800796 and the C allele of rs2069849 of IL-6 gene interaction between rs1800796 and abdominal obesity were all associated with increased OST risk.
Aged
;
Aged, 80 and over
;
China
;
Female
;
Gene-Environment Interaction
;
Humans
;
Interleukin-6
;
genetics
;
metabolism
;
Middle Aged
;
Obesity
;
epidemiology
;
etiology
;
genetics
;
Osteoporosis
;
epidemiology
;
etiology
;
genetics
;
Polymorphism, Single Nucleotide
;
Postmenopause
;
genetics
;
physiology
;
Risk Factors
9.Effects of Di(2-ethylhexyl)phthalate on Bone Metabolism in Ovariectomized Mice
Journal of Bone Metabolism 2019;26(3):169-177
BACKGROUND: The molecular pathways of how endocrine disruptors affect bone mineral density (BMD) and bone remodeling are still unclear. The purpose of this experimental study is to determine the effects of di(2-ethylhexyl)phthalate (DEHP) on bone metabolism in ovariectomized mice. METHODS: Twenty-six-month-old female CD-1 mice were divided into 4 groups: control, low-dose DEHP, high-dose DEHP, and estrogen groups (n=5, each group). All mice were subjected to ovariectomy for the induction of artificial menopause and then exposed to corn oil, DEHP, and estrogen for 2 months. Micro-computed tomography (Micro-CT) of the bone and analysis of blood samples for bone markers were performed to observe the changes in bone metabolism. RESULTS: Osteocalcin level was decreased in the control, low-dose and high-dose DEHP group, the reduction width was greater in the high-dose DEHP group (−0.219 ng/mL) than control group (−0.077 ng/mL, P<0.05). C-terminal telopeptide of type I collagen level was increased in the control, low-dose and high-dose DEHP group, the increase range of low-dose DEHP group (0.329 ng/mL) showed greater than control group (0.093 ng/mL, P<0.05). Micro-CT analysis revealed that the BMD was significantly lower in the high-dose DEHP group (19.8×10⁻² g/cm³) than control group (27.2×10⁻² g/cm³, P<0.05). The structure model index was significantly higher in the high-dose DEHP group (2.737) than low-dose DEHP group (2.648) and estrogen group (2.63, P<0.05). It means the progression of osteoporosis in the high-dose DEHP group. CONCLUSIONS: These results confirm the negative effects of DEHP on bone health in ovariectomized mice. Further continuous studies on genetic pathways and other endocrine disruptors will be necessary to validate these findings.
Animals
;
Bone Density
;
Bone Remodeling
;
Collagen Type I
;
Corn Oil
;
Diethylhexyl Phthalate
;
Endocrine Disruptors
;
Estrogens
;
Female
;
Humans
;
Menopause
;
Metabolism
;
Mice
;
Osteocalcin
;
Osteoporosis
;
Ovariectomy
;
X-Ray Microtomography
10.Protective effect of dietary oils containing omega-3 fatty acids against glucocorticoid-induced osteoporosis
Amr Samir ELBAHNASAWY ; Emiliya Ramzievna VALEEVA ; Eman Mustafa EL-SAYED ; Natalya Vladimirovna STEPANOVA
Journal of Nutrition and Health 2019;52(4):323-331
PURPOSE: Glucocorticoids (GCs) are implicated in secondary osteoporosis, and the resulting fractures cause significant morbidity. Polyunsaturated fatty acids (PUFAs) play a vital role in bone metabolism. However, few trials have studied the impact of omega-3 PUFA-containing oils against GC-induced osteoporosis. Therefore, the present study was undertaken to determine whether supplementation with omega-3 PUFA-containing dietary oils such as fish oil, flaxseed oil or soybean oil can impede the development of GC-induced osteoporosis. METHODS: The fatty acids (FAs) content of oils was determined using gas chromatography. Male rats were subdivided into 5 groups (8 rats each): normal control (balanced diet), prednisolone control (10 mg/kg prednisolone daily), soybean oil (prednisolone 10 mg/kg + soybean oil 7% w/w), flaxseed oil (prednisolone 10 mg/kg + flaxseed oil 7% w/w), and fish oil (from cod liver; prednisolone 10 mg/kg + fish oil 7% w/w). RESULTS: The study data exhibited a significant depletion in bone mineral density (BMD) and femur mass in the prednisolone control compared to the normal control, accompanied with a marked decrease in the levels of plasma calcium and 1,25-(OH)₂-vitamin D₃, and elevated levels of C-terminal telopeptide (CTX), tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA). Supplementation with fish oil, soybean oil or flaxseed oil helped to improve plasma calcium levels, and suppress oxidative stress and inflammatory markers. Additionally, bone resorption was suppressed as reflected by the decreased CTX levels. However, fish oil was more effective than the other two oils with a significant improvement in BMD and normal histological results compared to the normal control. CONCLUSION: This study demonstrated that supplementation with dietary oils containing omega-3 PUFAs such as fish oil, soybean oil or flaxseed oil can play a role in the prevention of bone loss and in the regulation of bone metabolism, especially fish oil which demonstrated a greater level of protection against GC-induced osteoporosis.
Animals
;
Bone Density
;
Bone Resorption
;
Calcium
;
Chromatography, Gas
;
Dietary Fats, Unsaturated
;
Fatty Acids
;
Fatty Acids, Omega-3
;
Fatty Acids, Unsaturated
;
Femur
;
Fish Oils
;
Glucocorticoids
;
Humans
;
Inflammation
;
Linseed Oil
;
Liver
;
Male
;
Malondialdehyde
;
Metabolism
;
Oils
;
Osteoporosis
;
Oxidative Stress
;
Plasma
;
Prednisolone
;
Rats
;
Soybean Oil
;
Tumor Necrosis Factor-alpha

Result Analysis
Print
Save
E-mail