1.Osteoimmunology research in rheumatoid arthritis: From single-cell omics approach.
Nan HU ; Jing WANG ; Bomiao JU ; Yuanyuan LI ; Ping FAN ; Xinxin JIN ; Xiaomin KANG ; Shufang WU
Chinese Medical Journal 2023;136(14):1642-1652
Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.
Humans
;
Osteoclasts/physiology*
;
Arthritis, Rheumatoid/pathology*
;
Inflammation/pathology*
;
Bone and Bones/pathology*
;
Bone Resorption/pathology*
2.Icariin inhibits thioacetamide-induced osteoclast differentiation through RANKL-p38/ERK-NFAT pathway.
Lin-Yan CHENG ; Xiao-Li JIN ; Xuan-Wei CHEN ; Jin CHEN ; Jun REN ; Hui HUANG ; Jian XU
China Journal of Chinese Materia Medica 2022;47(21):5882-5889
This study aims to investigate the therapeutic effect of icariin(ICA) on thioacetamide(TAA)-induced femoral osteolysis in rats. RAW264.7 cells were treated with TAA and ICA. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation, and tartrate-resistant acid phosphatase(TRAP) staining to examine the formation of osteoclasts. The expression of TRAP, cathepsin K, c-FOS, and NFATc1 in RAW264.7 cells was determined by Western blot and immunofluorescence method. Thirty-two SD rats were randomized into the control group, TAA group(intraperitoneal injection of TAA at 300 mg·kg~(-1)), ICA group(gavage of ICA at 600 mg·kg~(-1)) and TAA + ICA group(intraperitoneal injection of TAA at 300 mg·kg~(-1) and gavage of ICA at 600 mg·kg~(-1)). Administration was performed every other day for 6 weeks. Body weight and length of femur were recorded at execution. Pathological injury and osteoclast differentiation of femur were observed based on hematoxylin-eosin(HE) staining and TRAP staining, and the changes of bone metabolism-related indexes alkaline phosphatase(ALP), calcium(Ca), phosphorus(P), magnesium(Mg), and cross-linked N-telopeptide of type Ⅰ collagen(NTX-Ⅰ) in serum were detected. Three-point bending test and micro-CT were applied to evaluate the quality of femur, and Western blot to detect the levels of osteoclast-related proteins TRAP, cathepsin K, RANK, RANKL, p38, p-p38, ERK, p-ERK, JNK, p-JNK, c-Fos, and NFATc1. The results showed ICA could inhibit TAA-induced production of TRAP-positive cells, the expression of osteoclast-related proteins, and nuclear translocation of NFATc1. ICA alleviated the weight loss, reduction of femur length, and growth inhibition induced by TAA in SD rats. ICA ameliorated the decline of femur elastic modulus caused by TAA and significantly restored trabecular bone mineral density(BMD), trabecular pattern factor(Tb.Pf), trabecular number(Tb.N), trabecular thickness(Tb.Th), and structure model index(SMI), thus improving bone structure. Western blot results showed ICA suppressed femoral osteoclast differentiation induced by TAA through RANKL-p38/ERK-NFATc1 signaling pathway. ICA inhibits osteoclast differentiation and prevents TAA-induced osteolysis by down-regulating RANKL-p38/ERK-NFAT signaling pathway.
Rats
;
Animals
;
Osteoclasts
;
Cathepsin K/pharmacology*
;
Thioacetamide/pharmacology*
;
Bone Resorption/pathology*
;
Osteolysis/pathology*
;
Cell Differentiation
;
Rats, Sprague-Dawley
;
NFATC Transcription Factors/metabolism*
4.Brucine inhibits bone metastasis of breast cancer cells by suppressing Jagged1/Notch1 signaling pathways.
Ke-Fei HU ; Xiang-Ying KONG ; Mi-Cun ZHONG ; Hong-Ye WAN ; Na LIN ; Xiao-Hua PEI
Chinese journal of integrative medicine 2017;23(2):110-116
OBJECTIVETo examine the effects of brucine on the invasion, migration and bone resorption of receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis.
METHODSThe osteoclastogenesis model was builded by co-culturing human breast tumor MDA-MB-231 and mouse RAW264.7 macrophages cells. RANKL (50 ng/mL) and macrophage-colony stimulating factor (50 ng/mL) were added to this system, followed by treatment with brucine (0.02, 0.04 and 0.08 mmol/L), or 10 μmol/L zoledronic acid as positive control. The migration and bone resorption were measured by transwell assay and in vitro bone resorption assay. The protein expressions of Jagged1 and Notch1 were investigated by Western blot. The expressions of transforming growth factor-β1 (TGF-β1), nuclear factor-kappa B (NF-κB) and Hes1 were determined by enzyme-linked immunosorbent assay.
RESULTSCompared with the model group, brucine led to a dose-dependent decrease on migration of MDA-MB-231 cells, inhibited RANKL-induced osteoclastogenesis and bone resorption of RAW264.7 cells (P<0.01). Furthermore, brucine decreased the protein levels of Jagged1 and Notch1 in MDA-MB-231 cells and RAW264.7 cells co-cultured system as well as the expressions of TGF-β1, NF-κB and Hes1 (P<0.05 or P<0.01).
CONCLUSIONBrucine may inhibit osteoclastogenesis by suppressing Jagged1/Notch1 signaling pathways.
Animals ; Bone Neoplasms ; metabolism ; prevention & control ; secondary ; Breast Neoplasms ; drug therapy ; metabolism ; pathology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Female ; Humans ; Jagged-1 Protein ; metabolism ; Macrophages ; drug effects ; physiology ; Mice ; Osteoclasts ; drug effects ; physiology ; Receptor, Notch1 ; metabolism ; Signal Transduction ; drug effects ; Strychnine ; analogs & derivatives ; pharmacology ; therapeutic use
5.Seropharmacological study on osteogenic effects of post-absorption ingredients of an osteoprotective herbal formula.
Wing-Sum SIU ; Chun-Hay KO ; Hing-Lok WONG ; Si GAO ; Wai-Ting SHUM ; Clara Bik-San LAU ; Lung-Kim HUNG ; Ping-Chung LEUNG
Chinese journal of integrative medicine 2017;23(1):25-32
OBJECTIVETo further investigate the {ptin vitro} effects of an osteoprotective herbal formula "ELP" (Herba Epimedii, Fructus Ligustri Lucidi and Fructus Psoraleae) using seropharmacological approach.
METHODSRats were fed with ELP or its individual component herbs for 2 days. The serum containing the postabsorbed ingredients of the herbal items were collected for cell culture using UMR106 cell, RAW264.7 cell and mesenchymal stem cell (MSC) isolated from the bone marrow of the rats. The effects of the herbal-containing serum on cell toxicity were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay; bromodeoxyuridine assay was conducted to measure the cell proliferation of UMR106 cell and MSC; cell activity was measured using colorimetric method, and mRNA expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteopontin (OPN) of UMR106 and MSC as well as matrix metalloproteinase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) and cathepsin K of RAW264.7 were analyzed using real-time reverse-transcription polymerase chain reaction.
RESULTSELP and its component serum exhibited no cytotoxic effects on the cells. The ELP-containing serum increased the proliferation of UMR106 cell and MSC by 25.7% and 14.4 %, respectively and the alkaline phosphatase activity of MSC was increased by 42.6%. On the contrary, it inhibited the RAW264.7 cell differentiation by 29.2 %. ELP serum upregulated the Runx2 expression of UMR and MSC by 1.18 fold and 1.27 fold, respectively. It also upregulated ALP and OPN expression in MSC by 1.69- and 2.12-fold, respectively. On the other hand, ELP serum down-regulated MMP-9 and cathepsin K expression of RAW264.7 cell by 0.46- and 0.36-fold, respectively.
CONCLUSIONSThe serum of the animals fed with ELP contains active ingredients which are effective in promoting osteogenesis and inhibiting osteoclastogenesis.
Absorption, Physiological ; drug effects ; Animals ; Bone and Bones ; drug effects ; pathology ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Male ; Mice ; Osteoclasts ; drug effects ; metabolism ; pathology ; Osteogenesis ; drug effects ; Protective Agents ; pharmacology ; RAW 264.7 Cells ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Serum ; metabolism
6.Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro.
Xiao-li LIU ; Jing SONG ; Ke-jian LIU ; Wen-peng WANG ; Chang XU ; Yu-zeng ZHANG ; Yun LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):712-715
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Animals
;
Antigens, CD
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Feedback, Physiological
;
Fetus
;
Fluorides
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Gene Expression Regulation, Developmental
;
Osteoblasts
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteogenesis
;
drug effects
;
genetics
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Receptor Activator of Nuclear Factor-kappa B
;
genetics
;
metabolism
;
Receptors, Cell Surface
;
genetics
;
metabolism
;
Semaphorins
;
genetics
;
metabolism
;
Signal Transduction
;
Transforming Growth Factor beta1
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism
;
rhoA GTP-Binding Protein
;
genetics
;
metabolism
7.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
pathology
;
Cell Differentiation
;
Coculture Techniques
;
Gene Expression Regulation
;
Isoenzymes
;
genetics
;
metabolism
;
Male
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase
;
Vascular Calcification
;
genetics
;
metabolism
;
pathology
8.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
9.Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1.
Min Kyoung SONG ; Zang Hee LEE ; Hong Hee KIM
Experimental & Molecular Medicine 2015;47(12):e199-
Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-kappaB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-kappaB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.
Active Transport, Cell Nucleus
;
Animals
;
Bone Resorption/genetics/metabolism/pathology
;
Cell Differentiation
;
Cells, Cultured
;
Female
;
Gelsolin/genetics/*metabolism
;
Gene Knockdown Techniques
;
Humans
;
Mice, Inbred ICR
;
NF-kappa B/metabolism
;
NFATC Transcription Factors/*metabolism
;
Osteoclasts/*cytology/metabolism/pathology
;
RANK Ligand/*metabolism

Result Analysis
Print
Save
E-mail