1.Regulatory function and mechanism of autophagy on osteoclast.
Jian-Sen MIAO ; Xiang-Yang WANG ; Hai-Ming JIN
China Journal of Orthopaedics and Traumatology 2023;36(4):357-363
Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.
Humans
;
Osteoclasts
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
NF-kappa B/metabolism*
;
Autophagy
;
Osteoporosis
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
RANK Ligand/metabolism*
2.Advances on pentraxin 3 in osteoporosis and fracture healing.
Jia-Jun LU ; Yan SUN ; Xuan ZHANG ; Qiao-Qi WANG ; Zhou-Yi XIANG ; Yi-Qing LING ; Pei-Jian TONG ; Tao-Tao XU
China Journal of Orthopaedics and Traumatology 2023;36(4):393-398
Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.
Animals
;
Male
;
Mice
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
Fracture Healing/genetics*
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Osteoporosis/genetics*
;
Phosphatidylinositol 3-Kinases/pharmacology*
3.Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption.
Fanyuan YU ; Fengli HUO ; Feifei LI ; Yanqin ZUO ; Chenglin WANG ; Ling YE
International Journal of Oral Science 2022;14(1):6-6
Inflammation-associated proteinase functions are key determinants of inflammatory stromal tissues deconstruction. As a specialized inflammatory pathological process, dental internal resorption (IR) includes both soft and hard tissues deconstruction within the dentin-pulp complex, which has been one of the main reasons for inflammatory tooth loss. Mechanisms of inflammatory matrix degradation and tissue resorption in IR are largely unclear. In this study, we used a combination of Cre-loxP reporter, flow cytometry, cell transplantation, and enzyme activities assay to mechanistically investigate the role of regenerative cells, odontoblasts (ODs), in inflammatory mineral resorption and matrices degradation. We report that inflamed ODs have strong capabilities of matrix degradation and tissue resorption. Traditionally, ODs are regarded as hard-tissue regenerative cells; however, our data unexpectedly present ODs as a crucial population that participates in IR-associated tissue deconstruction. Specifically, we uncovered that nuclear factor-kappa b (NF-κB) signaling orchestrated Tumor necrosis factor α (TNF-α)-induced matrix metalloproteinases (Mmps) and Cathepsin K (Ctsk) functions in ODs to enhance matrix degradation and tissue resorption. Furthermore, TNF-α increases Rankl/Opg ratio in ODs via NF-κB signaling by impairing Opg expression but increasing Rankl level, which utterly makes ODs cell line 17IIA11 (A11) become Trap+ and Ctsk+ multinucleated cells to perform resorptive actions. Blocking of NF-κB signaling significantly rescues matrix degradation and resorptive functions of inflamed ODs via repressing vital inflammatory proteinases Mmps and Ctsk. Utterly, via utilizing NF-κB specific small molecule inhibitors we satisfactorily attenuated inflammatory ODs-associated human dental IR in vivo. Our data reveal the underlying mechanisms of inflammatory matrix degradation and resorption via proteinase activities in IR-related pathological conditions.
Humans
;
Matrix Metalloproteinases/metabolism*
;
Minerals/metabolism*
;
NF-kappa B/metabolism*
;
Odontoblasts/metabolism*
;
Osteoclasts/metabolism*
;
RANK Ligand/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
4.Icariin inhibits thioacetamide-induced osteoclast differentiation through RANKL-p38/ERK-NFAT pathway.
Lin-Yan CHENG ; Xiao-Li JIN ; Xuan-Wei CHEN ; Jin CHEN ; Jun REN ; Hui HUANG ; Jian XU
China Journal of Chinese Materia Medica 2022;47(21):5882-5889
This study aims to investigate the therapeutic effect of icariin(ICA) on thioacetamide(TAA)-induced femoral osteolysis in rats. RAW264.7 cells were treated with TAA and ICA. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation, and tartrate-resistant acid phosphatase(TRAP) staining to examine the formation of osteoclasts. The expression of TRAP, cathepsin K, c-FOS, and NFATc1 in RAW264.7 cells was determined by Western blot and immunofluorescence method. Thirty-two SD rats were randomized into the control group, TAA group(intraperitoneal injection of TAA at 300 mg·kg~(-1)), ICA group(gavage of ICA at 600 mg·kg~(-1)) and TAA + ICA group(intraperitoneal injection of TAA at 300 mg·kg~(-1) and gavage of ICA at 600 mg·kg~(-1)). Administration was performed every other day for 6 weeks. Body weight and length of femur were recorded at execution. Pathological injury and osteoclast differentiation of femur were observed based on hematoxylin-eosin(HE) staining and TRAP staining, and the changes of bone metabolism-related indexes alkaline phosphatase(ALP), calcium(Ca), phosphorus(P), magnesium(Mg), and cross-linked N-telopeptide of type Ⅰ collagen(NTX-Ⅰ) in serum were detected. Three-point bending test and micro-CT were applied to evaluate the quality of femur, and Western blot to detect the levels of osteoclast-related proteins TRAP, cathepsin K, RANK, RANKL, p38, p-p38, ERK, p-ERK, JNK, p-JNK, c-Fos, and NFATc1. The results showed ICA could inhibit TAA-induced production of TRAP-positive cells, the expression of osteoclast-related proteins, and nuclear translocation of NFATc1. ICA alleviated the weight loss, reduction of femur length, and growth inhibition induced by TAA in SD rats. ICA ameliorated the decline of femur elastic modulus caused by TAA and significantly restored trabecular bone mineral density(BMD), trabecular pattern factor(Tb.Pf), trabecular number(Tb.N), trabecular thickness(Tb.Th), and structure model index(SMI), thus improving bone structure. Western blot results showed ICA suppressed femoral osteoclast differentiation induced by TAA through RANKL-p38/ERK-NFATc1 signaling pathway. ICA inhibits osteoclast differentiation and prevents TAA-induced osteolysis by down-regulating RANKL-p38/ERK-NFAT signaling pathway.
Rats
;
Animals
;
Osteoclasts
;
Cathepsin K/pharmacology*
;
Thioacetamide/pharmacology*
;
Bone Resorption/pathology*
;
Osteolysis/pathology*
;
Cell Differentiation
;
Rats, Sprague-Dawley
;
NFATC Transcription Factors/metabolism*
5.Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress.
Bingdong SUI ; Jin LIU ; Chenxi ZHENG ; Lei DANG ; Ji CHEN ; Yuan CAO ; Kaichao ZHANG ; Lu LIU ; Minyan DANG ; Liqiang ZHANG ; Nan CHEN ; Tao HE ; Kun XUAN ; Fang JIN ; Ge ZHANG ; Yan JIN ; Chenghu HU
International Journal of Oral Science 2022;14(1):39-39
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Adrenergic Agents/pharmacology*
;
Apoptosis Regulatory Proteins/pharmacology*
;
Bone Diseases, Metabolic/metabolism*
;
Humans
;
Liposomes
;
MicroRNAs/genetics*
;
Nanoparticles
;
Osteoclasts
;
Osteogenesis/physiology*
;
RNA-Binding Proteins/pharmacology*
6.TRAF6/ERK/p38 pathway is involved in interleukin-17-mediated autophagy to promote osteoclast precursor cell differentiation.
Zhongxiu WANG ; Jiahui ZHONG ; Jingyi TAN ; Yeqi SHEN ; Lili CHEN
Journal of Zhejiang University. Medical sciences 2021;50(2):162-170
To investigate the effects of interleukin (IL)-17-mediated autophagy on the TNF receptor associated factor (TRAF6)/extracellular signal-regulated kinase (ERK)/p38 pathway and osteoclast differentiation. Mouse bone marrow-derived macrophages (BMM) were cultured with a medium containing 30 ng/mL macrophage colony stimulating factor and 50 ng/mL receptor activator of nuclear factor-kappa B ligard (RANKL), and IL-17 (0.01, 0.1, 1.0, 10 ng/mL) was added for intervention (IL-17 group). Tartrate-resistant acid phosphatase (TRAP) staining was used to observe TRAP positive multinucleated cells; phalloidin fluorescent staining was used to detect actin ring circumference; toluidine blue staining was used to analyze bone resorption lacuna formation. To further examine the mechanism of the effect of IL-17-mediated autophagy on the differentiation of osteoclasts, the control group used RANKL medium to culture mouse macrophage RAW264.7 cells, while the IL-17 group was treated with IL-17 (0.01, 0.1, 1.0, /mL). Western blot was used to detect the expression of autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and osteoclast-related proteins c-fos and nuclear factor of activated T cell 1 (NFATc1) after treatment with different concentrations of IL-17. The expression of LC3, NFATc1, TRAF6/ERK/p38 signaling pathway related proteins were detected in IL-17 and autophagy inhibitor 3-MA group. The number of TRAP positive multinucleated cells, the circumference of the actin ring and the area of bone resorption lacuna in IL-17 group treated with IL-17 (0.01, 0.1, were significantly higher than those in the control group. In IL-17 treated RAW264.7 cells, the expression of c-fos, NFATc1, Beclin-1, LC3, TRAF6, p-ERK, and p-p38 was all significantly up-regulated (all 0.05). After treatment with the autophagy inhibitor 3-MA, the expression levels of LC3, NFATc1, TRAF6, p-ERK, and p-p38 all decreased significantly (all 0.05). IL-17 can promote the expression of autophagy proteins and enhance the differentiation ability of osteoclast precursor cells, and the TRAF6/ERK/p38 signaling pathway may be involved in this process.
Animals
;
Autophagy
;
Bone Resorption
;
Cell Differentiation
;
Extracellular Signal-Regulated MAP Kinases
;
Interleukin-17
;
Mice
;
NFATC Transcription Factors/metabolism*
;
Osteoclasts/metabolism*
;
RANK Ligand/metabolism*
;
TNF Receptor-Associated Factor 6
7.The investigation of energy metabolism in osteoblasts and osteoclasts.
West China Journal of Stomatology 2021;39(5):501-509
The maintenance of bone homeostasis is critical for bone health. It is vulnerable to cause bone loss, even severely osteoporosis when the balance between bone formation and absorption is interrupted. Growing evidence has shown that energy metabolism disorders, such as abnormal glucose metabolism, irregular amino acid metabolism, and aberrant lipid metabolism, can damage bone homeostasis, causing or exacerbating bone mass loss and osteoporosis-related fractures. Here, we summarize the studies of energy metabolism in osteoblasts and osteoclasts and provide a better appreciation of how energy metabolism, especially glucose metabolism maintains bone homeostasis. With this knowledge, new avenues will be unraveled to understand and cue bone-related diseases such as osteoporosis.
Bone and Bones
;
Energy Metabolism
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
8.New perspectives on traumatic bone infections.
Ruo-Hui TANG ; Jing YANG ; Jun FEI
Chinese Journal of Traumatology 2020;23(6):314-318
In this paper, we review the results of previous studies and summarize the effects of various factors on the regulation of bone metabolism in traumatic bone infections. Infection-related bone destruction incorporates pathogens and iatrogenic factors in the process of bone resorption dominated by the skeletal and immune systems. The development of bone immunology has established a bridge of communication between the skeletal system and the immune system. Exploring the effects of pathogens, skeletal systems, immune systems, and antibacterials on bone repair in infectious conditions can help improve the treatment of these diseases.
Anti-Bacterial Agents/administration & dosage*
;
Bone and Bones/metabolism*
;
Cellular Microenvironment
;
Humans
;
Immune System/immunology*
;
Lymphocyte Subsets/immunology*
;
Osteitis/microbiology*
;
Osteoblasts/physiology*
;
Osteoclasts/physiology*
;
Staphylococcal Infections
9.Expression of autophagy-related protein Beclin-1 and microtubule-associated protein 2 light chain 3 in periodontal ligament cells in orthodontic tooth pressure areas.
Jia-Ling LÜ ; Jie XU ; Jin ZENG ; Hai-Xia DANG ; Jing-Hong YU ; Xian ZHAO ; Xiao-Mei XU
West China Journal of Stomatology 2019;37(2):168-173
OBJECTIVE:
To investigate the expression of autophagy-related protein Beclin-1 and microtubule-associated protein 2 light chain 3 (LC3Ⅱ) in periodontal ligament cells in orthodontic tooth pressure areas.
METHODS:
Sixty male SD rats were randomly divided into a blank control group and nine experimental groups. In the experimental groups, 0.392 N orthodontic force was used to move the first right upper molars for 15 min, 30 min, 1 h, 2 h, 4 h, 12 h, 1 d, 3 d, or 7 d. The blank control group did not receive any treatment. The rats were euthanized. Changes in the morphology of the periodontal membrane in the pressure areas were observed through hematoxylin and eosin (HE) staining. The expression levels of Beclin-1 and LC3Ⅱ were detected by immunohistochemical staining, and tartrate-resistant acid phosphatase (TRAP) staining was performed for the counting of osteoclasts.
RESULTS:
The HE stains showed that the hyalinization of the periodontal ligament appeared in the pressure areas after 1 day of exertion and was gradually aggravated. The immunohistochemical stains showed that the expression levels of Beclin-1 and LC3Ⅱ in the experimental groups gradually increased, peaked after 1 h, and then gradually decreased. The expression levels peaked again after 1 d, then decreased to baseline levels at 7 d of exertion. Beclin-1 and LC3Ⅱ were expressed in the osteoclasts. The TRAP stains indicated that the number of osteoclasts started to increase after 1 day.
CONCLUSIONS
Autophagy may participate in the process of periodontal ligament reconstruction in orthodontic tooth pressure areas by mediating the hyalinization of periodontal ligament and affecting the biological effects of osteoclasts.
Animals
;
Autophagy
;
Beclin-1
;
metabolism
;
Male
;
Microtubule-Associated Proteins
;
metabolism
;
Osteoclasts
;
Periodontal Ligament
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Tooth Movement Techniques
10.Prolonged continuous infusion of teriparatide promotes bone metabolism in normal but not in castrated mice.
Minghan LI ; Youhua HE ; Guojun TONG ; Dehong YANG
Journal of Southern Medical University 2019;39(9):1045-1051
OBJECTIVE:
To investigate the effects of continuous pumping of teriparatide (TPTD) on bone metabolism in ovariectomized and normal mice and provide experimental evidence for the selection of animal models for studying the effects of TPTD and its related peptides on osteoclasts.
METHODS:
Twenty-four female C57BL mice (6-weeks old) were subjected to ovariectomy (OVX) or sham operation followed 7 days later by continuous pumping of TPTD or the solvent vehicle (VEH) a micropump (SHAM-VEH, SHAM-TPTD, OVX-VEH, and OVX-TPTD groups; =6). Two weeks later, the tibial and femoral bones were harvested for micro-CT scanning to measure the parameters of the tibia and the femoral cortical bone. Histopathological examinations of the tibial tissue were conducted using HE staining and TRAP staining and the number of osteoclasts and the growth plate thickness were determined. The serum Ca2 + levels of the mice were measured. The primary osteoblasts from the cranial bone were treated with estradiol (E2) and TPTD for 48 h, and the expressions of β-catenin and RANKL protein in the cells were analyzed.
RESULTS:
The trabecular bone mass of OVX mice was significantly lower than that of sham-operated mice ( < 0.05). Continuous TPTD pumping significantly reduced tibial cancellous bone mass and femoral cortical bone area in the sham-operated mice, while in the castrated mice, TPTD pumping increased the cancellous bone mass without changing the cortical bone area. TRAP staining showed that cancellous osteoblasts in the tibia increased significantly in the castrated mice as compared with the sham-operated mice, and TPTD pumping significantly increased the number of cancellous osteoblasts in the sham-operated mice ( < 0.05). In the primary cultured osteoblasts, treatment with both E2 and TPTD obviously lowered the expression of β-catenin and increased the expression of RANKL as compared with TPTD treatment alone.
CONCLUSIONS
Continuous pumping of TPTD promotes bone resorption in normal mice but does not produce obvious bone resorption effect in the ovariectomized mice, suggesting that castrated mice are not suitable models for studying the effect of TPTD and the related peptides on the osteoclasts.
Animals
;
Bone Density
;
Bone Density Conservation Agents
;
administration & dosage
;
pharmacology
;
Bone Resorption
;
drug therapy
;
Bone and Bones
;
drug effects
;
metabolism
;
Female
;
Growth Plate
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoclasts
;
drug effects
;
Ovariectomy
;
RANK Ligand
;
metabolism
;
Teriparatide
;
administration & dosage
;
pharmacology
;
beta Catenin
;
metabolism

Result Analysis
Print
Save
E-mail