1.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
2.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
pathology
;
Cell Differentiation
;
Coculture Techniques
;
Gene Expression Regulation
;
Isoenzymes
;
genetics
;
metabolism
;
Male
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase
;
Vascular Calcification
;
genetics
;
metabolism
;
pathology
3.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
4.Involvement of the Ca2+ signaling pathway in osteoprotegerin inhibition of osteoclast differentiation and maturation.
Yingxiao FU ; Jianhong GU ; Yi WANG ; Yan YUAN ; Xuezhong LIU ; Jianchun BIAN ; Zong Ping LIU
Journal of Veterinary Science 2015;16(2):151-156
The purpose of this study was to determine whether the Ca2+ signaling pathway is involved in the ability of osteoprotegerin (OPG) to inhibit osteoclast differentiation and maturation. RAW264.7 cells were incubated with macrophage colony-stimulating factor (M-CSF) + receptor activator of nuclear factor-kappaB ligand (RANKL) to stimulate osteoclastogenesis and then treated with different concentrations of OPG, an inhibitor of osteoclast differentiation. The intracellular Ca2+ concentration [Ca2+]i and phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the different treatment groups were measured by flow cytometry and Western blotting, respectively. The results confirmed that M-CSF + RANKL significantly increased [Ca2+]i and CaMKII phosphorylation in osteoclasts (p < 0.01), and that these effects were subsequently decreased by OPG treatment. Exposure to specific inhibitors of the Ca2+ signaling pathway revealed that these changes varied between the different OPG treatment groups. Findings from the present study indicated that the Ca2+ signaling pathway is involved in both the regulation of osteoclastogenesis as well as inhibition of osteoclast differentiation and activation by OPG.
Animals
;
Calcium/*metabolism
;
*Calcium Signaling
;
*Cell Differentiation/drug effects
;
Cell Line
;
Cell Survival/drug effects
;
Gene Expression Regulation/drug effects
;
Macrophage Colony-Stimulating Factor/metabolism
;
Mice
;
Osteoclasts/*cytology/*drug effects/*metabolism
;
Osteoprotegerin/*pharmacology
;
RANK Ligand/metabolism
5.Research on effect of Sargentodoxae caulis on activity of osteoclasts and proliferation differentiation of osteoblasts.
Li-zhen CHEN ; Ying ZHOU ; Jun-fei HUANG ; Xue ZHANG ; Ting-ting FENG
China Journal of Chinese Materia Medica 2015;40(22):4463-4468
Through morphological observation, HE staining, TRAP staining and toluidine blue staining of bone resorption pits to identify osteoclasts which obtained by 1α, 25-(OH)2 VitD3 inducing rabbit bone marrow cells. Three indicators-TRAP staining, TRAP enzyme activity detecting and the number and area of bone resorption pits were adapted to detect the effect of Sargentodoxae caulis on the activity of osteoclasts. Culturing MC3T3-E1 Subclong 14 cells and detecting the effect of S. caulis on differentiation and proliferation of them by MTT and detecting the alkaline phosphatase in cells. The results show that all of the low, middle and high doses of water and alcohol extracts of S. caulis have significant inhibition on osteoclast differentiation and bone resorption ability in a dose-dependent manner. The low and middle doses of water and alcohol extracts of S. caulis can stimulate differentiation and proliferation of MC3T3-ElSubclone 14 cells, which indicates S. caulis can prevent osteoporosis and the function could be achieved by inhibiting osteoclast activity and promoting the proliferation and differentiation of osteoblasts.
Animals
;
Bone Resorption
;
drug therapy
;
physiopathology
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Mice
;
Osteoclasts
;
cytology
;
drug effects
;
Rabbits
6.Effect of naringin on osteoclast differentiation.
Feng-bo LI ; Xiao-lei SUN ; Jian-xiong MA ; Yang ZHANG ; Bin ZHAO ; Yan-jun LI ; Xin-long MA
China Journal of Chinese Materia Medica 2015;40(2):308-312
OBJECTIVETo discuss the effect of Drynariae Rhizoma's naringin on osteoclasts induced by mouse monocyte RAW264.7.
METHODRAW264.7 cells were induced by 100 μg x L(-1) nuclear factor-κB receptor activator ligand (RANKL) and became mature osteoclasts, which were identified through TRAP specific staining and bone resorption. MTT method was sued to screen and inhibit and the highest concentration of osteoclasts. After being cultured with the screened medium containing naringin for 5 days, positive TRAP cell counting and bone absorption area analysis were adopted to observe the effect of naringin on the formation of osteoclast sells and the bone absorption function. The osteoclast proliferation was measured by flow cytometry. The effects of RANK, TRAP, MMP-9, NFATc1 and C-fos mRNA expressions on nuclear factor-κB were detected by RT-PCR.
RESULTNaringin could inhibit osteoclast differentiation, bone absorption function and proliferation activity of osteoclasts, significantly down-regulate RANK, TRAP, MMP-9 and NFATc1 mRNA expressions in the osteoclast differentiation process, and up-regulate the C-fos mRNA expression.
CONCLUSIONNaringin could inhibit osteoclast differentiation, proliferation and bone absorption function. Its mechanism may be achieved by inhibiting the specific gene expression during the osteoclast differentiation process.
Acid Phosphatase ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flavanones ; pharmacology ; Isoenzymes ; metabolism ; Matrix Metalloproteinase 9 ; genetics ; Mice ; NFATC Transcription Factors ; genetics ; Osteoclasts ; cytology ; drug effects ; Tartrate-Resistant Acid Phosphatase
7.Inhibition mechanism of Qingluo Tongbi Granule () on osteoclast differentiation induced by synovial fibroblast and monocytes co-culture in adjuvant-induced arthritic rats.
Tian-yang LIU ; Ling-ling ZHOU ; Cong ZHOU ; Zhang-pu LIU ; Chen CHEN ; Zhe FENG ; Xue-ping ZHOU
Chinese journal of integrative medicine 2015;21(4):291-298
OBJECTIVETo study the mechanism underlying the inhibitory effect of Qingluo Tongbi Granule (, QTG) on osteoclast differentiation in rheumatoid arthritis in rats.
METHODSFibroblast and monocyte co-culture were used to induce osteoclast differentiation in adjuvant-induced arthritic (AIA) rats. Serum containing QTG was prepared and added to the osteoclasts, and activation of the tumor necrosis factor receptor-associated factor 6/mitogen-activated protein kinase/nuclear factor of activated T cells, cytoplasmic1 (TRAF6/MAPK/NFATc1) pathways was examined.
RESULTSThe induced osteoclasts were multinucleated and stained positive for tartrate-resistant acid phosphatase (TRAP) staining. Serum containing QTG at 14.4, 7.2 or 3.6 g/kg inhibited the activation of TRAF6, extracellular regulated protein kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and p38 and decreased the percentage of cells with nuclear NFATc1 in a dose-dependent manner, the high and middle doses exhibited clear inhibitory activity (P<0.01 and P<0.05, respectively). After the addition of MAPK inhibitors, the NFATc1 expression showed no significant difference compared with the control group (P>0.05).
CONCLUSIONSSerum containing QTG could generally inhibit the TRAF6/MAPK pathways and possibly inhibit the NFATc1 pathway. In addition, QTG may regulate other signaling pathways that are related to osteoclast differentiation and maturation.
Adjuvants, Immunologic ; adverse effects ; Animals ; Arthritis, Experimental ; pathology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Coculture Techniques ; Down-Regulation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Fibroblasts ; pathology ; Male ; Monocytes ; pathology ; Osteoclasts ; cytology ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley ; Synovial Membrane ; pathology
8.Regulation of matrix metalloproteinase-9 protein expression by 1alpha,25-(OH)2D3 during osteoclast differentiation.
Jian Hong GU ; Xi Shuai TONG ; Guo Hong CHEN ; Xue Zhong LIU ; Jian Chun BIAN ; Yan YUAN ; Zong Ping LIU
Journal of Veterinary Science 2014;15(1):133-140
To investigate 1alpha,25-(OH)2D3 regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1alpha,25-(OH)2D3 during culturing, and cell proliferation was measured using the methylthiazol tetrazolium method. Osteoclast formation was confirmed using tartrate-resistant acid phosphatase (TRAP) staining and assessing bone lacunar resorption. MMP-9 protein expression levels were measured with Western blotting. We showed that 1alpha,25-(OH)2D3 inhibited RAW264.7 cell proliferation induced by RANKL and M-CSF, increased the numbers of TRAP-positive osteoclasts and their nuclei, enhanced osteoclast bone resorption, and promoted MMP-9 protein expression in a concentration-dependent manner. These findings indicate that 1alpha,25-(OH)2D3 administered at a physiological relevant concentration promoted osteoclast formation and could regulate osteoclast bone metabolism by increasing MMP-9 protein expression during osteoclast differentiation.
Acid Phosphatase/metabolism
;
Animals
;
Blotting, Western
;
Calcitriol/*pharmacology
;
Calcium Channel Agonists/pharmacology
;
*Cell Differentiation
;
Cell Line
;
Cell Proliferation
;
Gene Expression Regulation, Enzymologic/*drug effects
;
Isoenzymes/metabolism
;
Matrix Metalloproteinase 9/*genetics/metabolism
;
Mice
;
Osteoclasts/*cytology/*enzymology
;
Tetrazolium Salts
;
Thiazoles
9.Effect of osteoprotegerin in combination with interleukin-6 on inhibition of osteoclast differentiation.
Xin WANG ; Yan LUO ; Wen-bo LIAO ; Jian ZHANG ; Ting-mei CHEN
Chinese Journal of Traumatology 2013;16(5):277-280
OBJECTIVETo observe the effect of recombinant interleukin-6 (IL-6) and osteoprotegerin (OPG) on inhibiting bone absorption induced by receptor activator for nuclear factor-kB ligand (RANKL) in murine osteoclast precursor cells (OCPs) model.
METHODSRAW 264.7 cells were solely treated with 50 ng/ml RANKL for 1 day, and then they were divided into three groups: RANKL (control group), RANKL+IL-6 (IL-6 group) and RANKL+IL-6+OPG (combination group). These cells were harvested and investigated by means of HE staining under light microscope after consecutive 9 days. Furthermore, staining tartrate-resistant acid phosphatase(TRAP)-positive multinucleated cells were detected by inverted phase contrast microscope. The absorption pits of bone slices were observed under scanning electron microscope.
RESULTSThe number of mature osteoclast cells in control group was more than that in IL-6 alone or IL-6 combined with OPG group (P less than 0.05). Interestingly, this experiment has also demonstrated that there was a large number of TRAP-positive multinucleated osteoclasts (more than 3 nuclei) and several bone absorption formation in the control group, whereas the outcome was completely different in both IL-6 group and IL-6+OPG group (P less than 0.05).
CONCLUSIONIL-6 can suppress the differentiation of mature osteoclasts as directly adding it into the RAW 264.7 cells induced by 50 ng/ml RANKL, and further the effect of osteolysis is remarkably reduced. When treatment with IL-6 combined with OPG, a more effective strategy for the treatment of osteoporosis is reached.
Animals ; Cell Differentiation ; drug effects ; Cells, Cultured ; Interleukin-6 ; administration & dosage ; pharmacology ; Mice ; Osteoclasts ; cytology ; drug effects ; Osteoprotegerin ; administration & dosage ; pharmacology ; RANK Ligand ; pharmacology ; Recombinant Proteins ; administration & dosage ; pharmacology
10.In vitro osteoclast-suppressing effect of sodium ibandronate.
Wei ZHANG ; Da-long YANG ; Yun-xia WANG ; Hui-wang WANG ; Zeng-jiang ZHEN ; Ying-ze ZHANG ; Yong SHEN
Chinese Medical Journal 2013;126(4):751-755
BACKGROUNDBisphosphonates (BPs) have been reported to reduce local recurrence in giant cell tumor (GCT) of bone because of their osteoclast-suppressing effect; however, the optimal mode of delivery and the dose and duration of treatment of BPs remain to be established. To address these issues, it is first necessary to clarify the manner of action of BPs on osteoclasts. We herein evaluated the osteoclast-suppressing effect of sodium ibandronate in vitro.
METHODSMouse osteoclasts (OCLs) were generated in vitro using mouse bone marrow mononuclear cells. First, various concentrations of sodium ibandronate and equal amounts of phosphate-buffered saline were added to cell culture media. The number of multinucleated cells (over three nuclei) was recorded in each group, OCL formation was compared, and the most effective concentration of sodium ibandronate was determined. Then, high concentrations of sodium ibandronate were added to the experimental cell culture media; no ibandronate was given in the control group. Comparisons were made between the two groups in terms of OCL adhesion, migration, and bone resorption.
RESULTSOCL formation was suppressed by sodium ibandronate in vitro; the most pronounced effect was observed at the concentration of 10(-5) mol/L. OCL migration and bone resorption were significantly suppressed at this concentration, though there was no effect on OCL adhesion.
CONCLUSIONSSodium ibandronate was effective in suppressing OCLs and decreasing resorption in GCT. The strong anti-OCL effectiveness at a high concentration in vitro indicates a topical mode of application.
Animals ; Bone Resorption ; Cell Movement ; drug effects ; Cells, Cultured ; Diphosphonates ; pharmacology ; Mice ; Osteoclasts ; cytology ; drug effects

Result Analysis
Print
Save
E-mail