1.Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children
Linda S BAUMGARTNER ; Ernest MOORE ; David SHOOK ; Steven MESSINA ; Mary Clare DAY ; Jennifer GREEN ; Rajesh NANDY ; Michael SEIDMAN ; James E BAUMGARTNER
Journal of Audiology & Otology 2018;22(4):209-222
BACKGROUND AND OBJECTIVES: Sensorineural hearing loss (SNHL) in children is associated with neurocognitive morbidity. The cause of SNHL is a loss of hair cells in the organ of Corti. There are currently no reparative treatments for SNHL. Numerous studies suggest that cord blood mononuclear cells (human umbilical cord blood, hUCB) allow at least partial restoration of SNHL by enabling repair of a damaged organ of Corti. Our objective is to determine if hUCB is a safe treatment for moderate to severe acquired SNHL in children. SUBJECTS AND METHODS: Eleven children aged 6 months to 6 years with moderate to severe acquired SNHL were treated with intravenous autologous hUCB. The cell dose ranged from 8 to 30 million cells/kg body weight. Safety was assessed by measuring systemic hemodynamics during hUCB infusion. Infusion-related toxicity was evaluated by measuring neurologic, hepatic, renal and pulmonary function before and after infusion. Auditory function, auditory verbal language assessments and MRI with diffusion tensor imaging (DTI) were obtained before and after treatment. RESULTS: All patients survived, and there were no adverse events. No infusionrelated changes in hemodynamics occurred. No infusion-related toxicity was recorded. Five subjects experienced a reduction in auditory brainstem response (ABR) thresholds. Four of those 5 subjects also experienced an improvement in cochlear nerve latencies. Comparison of MRI with DTI sequences obtained before and after treatment revealed increased fractional anisotropy in the primary auditory cortex in three of five subjects with reduced ABR thresholds. Statistically significant (p < 0.05) reductions in ABR thresholds were identified. CONCLUSIONS: TIntravenous hUCB is feasible and safe in children with SNHL.
Anisotropy
;
Auditory Cortex
;
Body Weight
;
Child
;
Cochlear Nerve
;
Diffusion Tensor Imaging
;
Evoked Potentials, Auditory, Brain Stem
;
Fetal Blood
;
Hair
;
Hearing Loss, Sensorineural
;
Hemodynamics
;
Humans
;
Magnetic Resonance Imaging
;
Mesenchymal Stromal Cells
;
Organ of Corti
;
Umbilical Cord
2.Measurement of the Mechanical Deformation of Organ of Corti in a Model of Acute Endolymphatic Hydrops.
Sang Heon LEE ; Federico KALINEC
Korean Journal of Otolaryngology - Head and Neck Surgery 2016;59(2):110-119
BACKGROUND AND OBJECTIVES: Endolymphatic hydrops has been considered as an important histologic substrate of Meniere's disease. A permanent displacement of basilar membrane (BM) by increased endolymphatic pressure has been thought to be an explanation for hearing change. Direct observation of histological sections of temporal bones, however, suggested that stereocilia and tectorial membrane decoupling is more associated with pressure induced by mechanical deformation of the organ of Corti rather than with the displacement of BM. METERIALS AND METHOD: 26 cochleae from 13 female pigmented ginea pigs were harvested. One cochlea per each animal was injected with artificial perilymph. The other one was used as control. After fixation, followed by embedding and mid-modiolar sectionning, specimens were observed with a microscope. Morphometric parameters of each row and turn of the organ of Corti were measured and quantified. RESULTS: The average area and height of the organ of Corti were significantly smaller in the apical turn of the experimental group (p<0.05). The lengths of outer hair cell and Deiters cell in the apical turn were also significantly reduced in the experimental group (p<0.05). The angle between the outer hair cell and Deiters cell was smaller in the apex and in the 3rd turn of the experimental group (p<0.05). CONCLUSION: Results show that compression and deformation of the organ of Corti, especially in the apical turn, is a prominent feature in the acute endolymphatic hydrops model. We suggest that the deformation of organ of Corti is the primary cause of hydrops that induce the decoupling of tectorial membrane and stereocilia rather than the displacement of BM.
Animals
;
Basilar Membrane
;
Cochlea
;
Edema
;
Endolymphatic Hydrops*
;
Female
;
Guinea Pigs
;
Hair
;
Hearing
;
Humans
;
Meniere Disease
;
Organ of Corti*
;
Perilymph
;
Stereocilia
;
Swine
;
Tectorial Membrane
;
Temporal Bone
3.Noise-Induced Neural Degeneration and Therapeutic Effect of Antioxidant Drugs.
Seong Hee CHOI ; Chul Hee CHOI
Journal of Audiology & Otology 2015;19(3):111-119
The primary site of lesion induced by noise exposure is the hair cells in the organ of Corti and the primary neural degeneration occurs in synaptic terminals of cochlear nerve fibers and spiral ganglion cells. The cellular basis of noise-induced hearing loss is oxidative stress, which refers to a severe disruption in the balance between the production of free radicals and antioxidant defense system in the cochlea by excessive production of free radicals induced by noise exposure. Oxidative stress has been identified by a variety of biomarkers to label free radical activity which include four-hydroxy-2-nonenal, nitrotyrosine, and malondialdehyde, and inducible nitric oxide synthase, cytochrome-C, and cascade-3, 8, 9. Furthermore, oxidative stress is contributing to the necrotic and apoptotic cell deaths in the cochlea. To counteract the known mechanisms of pathogenesis and oxidative stress induced by noise exposure, a variety of antioxidant drugs including oxygen-based antioxidants such as N-acetyl-L-cystein and acetyl-L-carnitine and nitrone-based antioxidants such as phenyl-N-tert-butylnitrone (PBN), disufenton sodium, 4-hydroxy PBN, and 2, 4-disulfonyl PBN have been used in our laboratory. These antioxidant drugs were effective in preventing or treating noise-induced hearing loss. In combination with other antioxidants, antioxidant drugs showed a strong synergistic effect. Furthermore, successful use of antioxidant drugs depends on the optimal timing of treatment and the duration of treatment, which are highly related to the time window of free radical formation induced by noise exposure.
Acetylcarnitine
;
Antioxidants
;
Biomarkers
;
Cell Death
;
Cochlea
;
Cochlear Nerve
;
Free Radicals
;
Hair
;
Hearing Loss, Noise-Induced
;
Malondialdehyde
;
Nitric Oxide Synthase Type II
;
Noise
;
Organ of Corti
;
Oxidative Stress
;
Presynaptic Terminals
;
Sodium
;
Spiral Ganglion
4.Role of Endogenous Bone Marrow Stem Cells Mobilization in Repair of Damaged Inner Ear in Rats.
Ahmed M ELBANA ; Seddik ABDEL-SALAM ; Ghada M MORAD ; Ahmed A OMRAN
International Journal of Stem Cells 2015;8(2):146-154
BACKGROUND AND OBJECTIVES: The utilization of the stem cells is widely used in the last few years in different fields of medicine, either by external transplantation or endogenous mobilization, most of these studies still experimental on animals; few were tried on human as in the spinal cord injury or myocardial infarction. As regard its use in the inner ear, stem cell transplantation was examined in many previous studies, while the mobilization idea is a new method to be experimented in inner ear hair cell regeneration. The present work assessed the possibility of mobilizing endogenous bone marrow derived stem cells (SCs) in rats using granulocyte colony stimulating factor (G-CSF) to induce regeneration and repair to experimentally damaged inner ear hair cells by Amikacin injection. METHODS: The study included thirty adult Sprague Dawley male rats. Experimental induction of inner ear damage was done by repeated intratympanic injection of amikacin sulfate. Mobilization of bone marrow SCs was provoked by subcutaneous injection of GCSF. Cochlear integrity, induction of hearing loss and functional recovery of sensory hearing loss were assessed using Distortion Product Otoacoustic Emission (DPOAEs). The morphological alteration and recovery of the organ of Corti was assessed histologically using the light and scanning electron microscopes. RESULTS: After six month duration, there was improvement in 50% of the sensorineural DPOAE results. Functional recovery coincided with the repair of structural components of organ of Corti. CONCLUSIONS: SCs mobilization by G-CSF is a promising alternative method for replacement therapy in sensorineural hearing loss.
Adult
;
Amikacin
;
Animals
;
Bone Marrow*
;
Colony-Stimulating Factors
;
Ear, Inner*
;
Granulocyte Colony-Stimulating Factor
;
Granulocytes
;
Hair
;
Hearing
;
Hearing Loss
;
Hearing Loss, Sensorineural
;
Humans
;
Injections, Subcutaneous
;
Male
;
Myocardial Infarction
;
Organ of Corti
;
Rats*
;
Regeneration
;
Spinal Cord Injuries
;
Stem Cell Transplantation
;
Stem Cells*
5.Bucillamine prevents cisplatin-induced ototoxicity through induction of glutathione and antioxidant genes.
Se Jin KIM ; Joon Ho HUR ; Channy PARK ; Hyung Jin KIM ; Gi Su OH ; Joon No LEE ; Su Jin YOO ; Seong Kyu CHOE ; Hong Seob SO ; David J LIM ; Sung K MOON ; Raekil PARK
Experimental & Molecular Medicine 2015;47(2):e142-
Bucillamine is used for the treatment of rheumatoid arthritis. This study investigated the protective effects of bucillamine against cisplatin-induced damage in auditory cells, the organ of Corti from postnatal rats (P2) and adult Balb/C mice. Cisplatin increases the catalytic activity of caspase-3 and caspase-8 proteases and the production of free radicals, which were significantly suppressed by pretreatment with bucillamine. Bucillamine induces the intranuclear translocation of Nrf2 and thereby increases the expression of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GSS), which further induces intracellular antioxidant glutathione (GSH), heme oxygenase 1 (HO-1) and superoxide dismutase 2 (SOD2). However, knockdown studies of HO-1 and SOD2 suggest that the protective effect of bucillamine against cisplatin is independent of the enzymatic activity of HO-1 and SOD. Furthermore, pretreatment with bucillamine protects sensory hair cells on organ of Corti explants from cisplatin-induced cytotoxicity concomitantly with inhibition of caspase-3 activation. The auditory-brainstem-evoked response of cisplatin-injected mice shows marked increases in hearing threshold shifts, which was markedly suppressed by pretreatment with bucillamine in vivo. Taken together, bucillamine protects sensory hair cells from cisplatin through a scavenging effect on itself, as well as the induction of intracellular GSH.
Animals
;
Antioxidants/*metabolism/*pharmacology
;
Apoptosis/drug effects
;
Caspase 3/metabolism
;
Caspase 8/metabolism
;
Cell Line
;
Cisplatin/*toxicity
;
Cysteine/*analogs & derivatives/pharmacology
;
Gene Expression Regulation/*drug effects
;
Gene Knockdown Techniques
;
Glutathione/*metabolism
;
Heme Oxygenase-1/genetics
;
Intracellular Space/metabolism
;
Male
;
Metabolic Detoxication, Phase II/genetics
;
Mice
;
NF-E2-Related Factor 2/genetics
;
Nitric Oxide/biosynthesis
;
Organ of Corti/*drug effects/*metabolism
;
RNA Interference
;
Rats
;
Reactive Oxygen Species/metabolism
;
Superoxide Dismutase/genetics
6.Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs.
Sujeong JANG ; Hyong Ho CHO ; Song Hee KIM ; Kyung Hwa LEE ; Jae Yeoul JUN ; Jong Seong PARK ; Han Seong JEONG ; Yong Beom CHO
Clinical and Experimental Otorhinolaryngology 2015;8(2):83-91
OBJECTIVES: In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. METHODS: HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. RESULTS: Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. CONCLUSION: The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals.
Animals
;
Bone Marrow
;
Cell Differentiation
;
Cochlea
;
Cochlear Nerve
;
Colforsin
;
Ear
;
Fibroblast Growth Factor 2
;
Guinea Pigs*
;
Hair
;
Hearing Loss
;
Hearing Loss, Sensorineural
;
Humans
;
Ion Channels
;
Mammals
;
Mastoid
;
Mesenchymal Stromal Cells*
;
Neomycin
;
Neurons
;
Organ of Corti
;
Regeneration*
;
Scala Tympani
;
Sensory Receptor Cells
;
Sodium
;
Spiral Ganglion
;
Transplantation
;
Transplants
7.Updates in Noise Induced Hearing Loss.
Korean Journal of Otolaryngology - Head and Neck Surgery 2014;57(9):584-588
Noise-induced hearing loss could be caused by mechanical destruction of the delicate membranes of the inner ear, hair cells and supporting structures of the organ of Corti, and by intense metabolic activity, which increases free radical formation in the cochlea. When exposure is continuous, injury is a consequence of the total amount of energy to which cochlear tissues are exposed and a hearing conservation program is essential including hearing protection devices. Several therapeutic trials including antioxidant agents have been shown at least partially effective in prevention of hearing loss and hair cell death.
Cell Death
;
Cochlea
;
Ear, Inner
;
Hair
;
Hearing
;
Hearing Loss*
;
Hearing Loss, Noise-Induced
;
Membranes
;
Noise*
;
Organ of Corti
8.Effect of piperphentonamine hydrochloride on expressions of interleukin-1β and TNF-α mRNA and Fas protein in guinea pigs with cochlear ischemia/reperfusion injury.
Yonghe LI ; Wei LI ; Jian WU ; Hao CHEN ; Liangcai WAN
Journal of Southern Medical University 2013;33(11):1669-1672
OBJECTIVETo investigate the relationship between IL-1β and TNF-α mRNA and Fas protein expressions and cochlear ischemia reperfusion injury and investigate the protective mechanism of PPTA against cochlear reperfusion injury.
METHODSSixty-four guinea pigs were randomly divided into normal control group, blank control group, ischemia/reperfusion (by clamping the bilateral vertebral artery and right common carotid artery for 1 h) control group, and ischemia/reperfusion with PPTA treatment group. In PPTA group, PPTA was injected via the femoral vein immediately after reperfusion, and ischemia/reperfusion control group received saline injection. In 6 guinea pigs from each group, the cochlear tissues were removed after 24 h of reperfusion for examination of expressions of IL-1β and TNF-α mRNA by real-time PCR, and the rest animals were used for immunohistochemical detection of Fas protein.
RESULTSCompared with those of normal group and blank control group, the expressions of IL-1β and TNF-β mRNA increased significantly after cochlear ischemia/reperfusion (P<0.001), but were lowered significantly by PPTA (P<0.001). Positive expression of Fas protein expression was detected in the Corti organ, spiral ganglion and stria vascularis in ischemia/reperfusion control group with significantly higher IOD values than those of the other 3 groups (P<0.05). The IOD value showed no significant difference between PPTA-treated group, normal control group, and blank control group (P>0.05).
CONCLUSIONSPPTA can suppress the expression of Fas protein and IL-1β and TNF-β mRNAs in the cochlea of guinea pigs with cochlear ischemia/reperfusion. The protective effect of PPTA against cochlear ischemia/reperfusion is mediated probably by inhibition of inflammatory responses and cell apoptosis.
3,4-Methylenedioxyamphetamine ; analogs & derivatives ; pharmacology ; Animals ; Cochlea ; blood supply ; metabolism ; pathology ; Female ; Guinea Pigs ; Interleukin-1beta ; genetics ; metabolism ; Male ; Neuroprotective Agents ; pharmacology ; Organ of Corti ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Reperfusion Injury ; metabolism ; Spiral Ganglion ; metabolism ; Stria Vascularis ; metabolism ; Tumor Necrosis Factor-alpha ; genetics ; metabolism ; fas Receptor ; metabolism
9.Noise-induced nitrotyrosine increase and outer hair cell death in guinea pig cochlea.
Wei-ju HAN ; Xiao-rui SHI ; Alfred NUTTALL
Chinese Medical Journal 2013;126(15):2923-2927
BACKGROUNDModern research has provided new insights into the biological mechanisms of noise-induced hearing loss, and a number of studies showed the appearance of increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) during and after noise exposure. This study was designed to investigate the noise exposure induced nitrotyrosine change and the mechanism of outer hair cells death in guinea pig cochlea.
METHODThirty guinea pigs were used in this study. The experimental animals were either exposed for 4 hours per day to broadband noise at 122 dB SPL (A-weighted) for 2 consecutive days or perfused cochleae with 5 mg/ml of the SIN1 solutions, an exogenous NO and superoxide donor, for 30 minutes. Then the cochleae of the animals were dissected. Propidium iodide (PI), a DNA intercalating fluorescent probe, was used to trace morphological changes in OHC nuclei. The distribution of nitrotyrosine (NT) in the organ of Corti and the cochlear lateral wall tissue from the guinea pigs were examined using fluorescence immunohistochemistry method. Whole mounts of organ of Corti were prepared. Morphological and fluorescent changes were examined under a confocal microscope.
RESULTSEither after noise exposure or after SIN1 perfusion, outer hair cells (OHCs) death with characteristics of both apoptotic and necrotic degradation appeared. Nitrotyrosine immunolabeling could be observed in the OHCs from the control animals. After noise exposure, NT immunostaining became much greater than the control animals in OHCs. The apoptotic OHC has significant increase of nitrotyrosine in and around the nucleus following noise exposure. In the normal later wall of cochleae, relatively weak nitrotyrosine immunolabeling could be observed. After noise exposure, nitrotyrosine immunoactivity became stronger in stria vascularis.
CONCLUSIONNoise exposure induced increase of nitrotyrosine production is associated with OHCs death suggesting reactive nitrogen species participation in the cochlear pathophysiology of noise-induced hearing loss.
Animals ; Cell Death ; Cochlea ; chemistry ; pathology ; Female ; Guinea Pigs ; Hair Cells, Auditory, Outer ; pathology ; Immunohistochemistry ; Male ; Noise ; adverse effects ; Organ of Corti ; chemistry ; pathology ; Tyrosine ; analogs & derivatives ; analysis
10.Potassium Currents in Isolated Deiters' Cells of Guinea Pig.
Jong Woo CHUNG ; Eui Chol NAM ; Won Tae KIM ; Jae Boum YOUM ; Chae Hun LEEM
The Korean Journal of Physiology and Pharmacology 2013;17(6):537-546
Deiters' cells are the supporting cells in organ of Corti and are suggested to play an important role in biochemical and mechanical modulation of outer hair cells. We successfully isolated functionally different K+ currents from Deiters' cells of guinea pig using whole cell patch clamp technique. With high K+ pipette solution, depolarizing step pulses activated strongly outward rectifying currents which were dose-dependently blocked by clofilium, a class III anti-arrhythmic K+ channel blocker. The remaining outward current was transient in time course whereas the clofilium-sensitive outward current showed slow inactivation and delayed rectification. Addition of 5 mM tetraethylammonium (TEA) further blocked the remaining current leaving a very fast inactivating transient outward current. Therefore, at least three different types of K+ current were identified in Deiters' cells, such as fast activating and fast inactivating current, fast activating slow inactivating current, and very fast inactivating transient outward current. Physiological role of them needs to be established.
Animals
;
Ear, Inner
;
Guinea Pigs*
;
Guinea*
;
Hair
;
Hearing
;
Organ of Corti
;
Pharmacology
;
Potassium Channels
;
Potassium*
;
Quaternary Ammonium Compounds
;
Tetraethylammonium

Result Analysis
Print
Save
E-mail