1.Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain.
Sebastian PARUSEL ; Min-Hee YI ; Christine L HUNT ; Long-Jun WU
Neuroscience Bulletin 2023;39(3):368-378
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Humans
;
Optogenetics
;
Brain/physiology*
;
Microglia
;
Chronic Pain/therapy*
;
Neurons/physiology*
2.Dissecting the Neural Circuitry for Pain Modulation and Chronic Pain: Insights from Optogenetics.
Fang GUO ; Yu DU ; Feng-Hui QU ; Shi-Da LIN ; Zhong CHEN ; Shi-Hong ZHANG
Neuroscience Bulletin 2022;38(4):440-452
Pain is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage. The processing of pain involves complicated modulation at the levels of the periphery, spinal cord, and brain. The pathogenesis of chronic pain is still not fully understood, which makes the clinical treatment challenging. Optogenetics, which combines optical and genetic technologies, can precisely intervene in the activity of specific groups of neurons and elements of the related circuits. Taking advantage of optogenetics, researchers have achieved a body of new findings that shed light on the cellular and circuit mechanisms of pain transmission, pain modulation, and chronic pain both in the periphery and the central nervous system. In this review, we summarize recent findings in pain research using optogenetic approaches and discuss their significance in understanding the pathogenesis of chronic pain.
Brain
;
Chronic Pain
;
Humans
;
Neurons
;
Optogenetics
;
Spinal Cord
3.The developments and applications of functional ultrasound imaging.
Lijie HUANG ; Qiong HE ; Rui WANG ; Xingyue WEI ; Gangqiao XIE ; Jianwen LUO
Journal of Biomedical Engineering 2022;39(5):1015-1021
In recent years, due to the emergence of ultrafast ultrasound imaging technology, the sensitivity of detecting slow and micro blood flow with ultrasound has been dramatically improved, and functional ultrasound imaging (fUSI) has been developed. fUSI is a novel technology for neurological imaging that utilizes neurovascular coupling to detect the functional activity of the central nervous system (CNS) with high spatiotemporal resolution and high sensitivity, which is dynamic, non-invasive or minimally invasive. fUSI fills the gap between functional magnetic resonance imaging (fMRI) and optical imaging with its high accessibility and portability. Moreover, it is compatible with electrophysiological recording and optogenetics. In this paper, we review the developments of fUSI and its applications in neuroimaging. To date, fUSI has been used in various animals ranging from mice to non-human primates, as well as in clinical surgeries and bedside functional brain imaging of neonates. In conclusion, fUSI has great potential in neuroscience research and is expected to become an important tool for neuroscientists, pathologists and pharmacologists.
Animals
;
Mice
;
Ultrasonography/methods*
;
Brain/physiology*
;
Magnetic Resonance Imaging
;
Optogenetics
;
Hemodynamics
4.Restoring Vision Naturally and Noninvasively.
Chundi WANG ; Hu DENG ; Shenbing KUANG
Neuroscience Bulletin 2021;37(11):1642-1644
5.Neuroimmune interactions and kidney disease
Sho HASEGAWA ; Tsuyoshi INOUE ; Reiko INAGI
Kidney Research and Clinical Practice 2019;38(3):282-294
The autonomic nervous system plays critical roles in maintaining homeostasis in humans, directly regulating inflammation by altering the activity of the immune system. The cholinergic anti-inflammatory pathway is a well-studied neuroimmune interaction involving the vagus nerve. CD4-positive T cells expressing β2 adrenergic receptors and macrophages expressing the alpha 7 subunit of the nicotinic acetylcholine receptor in the spleen receive neurotransmitters such as norepinephrine and acetylcholine and are key mediators of the cholinergic anti-inflammatory pathway. Recent studies have demonstrated that vagus nerve stimulation, ultrasound, and restraint stress elicit protective effects against renal ischemia-reperfusion injury. These protective effects are induced primarily via activation of the cholinergic anti-inflammatory pathway. In addition to these immunological roles, nervous systems are directly related to homeostasis of renal physiology. Whole-kidney three-dimensional visualization using the tissue clearing technique CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) has illustrated that renal sympathetic nerves are primarily distributed around arteries in the kidneys and denervated after ischemia-reperfusion injury. In contrast, artificial renal sympathetic denervation has a protective effect against kidney disease progression in murine models. Further studies are needed to elucidate how neural networks are involved in progression of kidney disease.
Acetylcholine
;
Arteries
;
Autonomic Nervous System
;
Cholinergic Neurons
;
Homeostasis
;
Humans
;
Immune System
;
Inflammation
;
Kidney Diseases
;
Kidney
;
Macrophages
;
Nervous System
;
Neurotransmitter Agents
;
Norepinephrine
;
Optogenetics
;
Physiology
;
Receptors, Adrenergic
;
Receptors, Nicotinic
;
Reperfusion Injury
;
Spleen
;
Sympathectomy
;
Sympathetic Nervous System
;
T-Lymphocytes
;
Ultrasonography
;
Vagus Nerve
;
Vagus Nerve Stimulation
6.Development and application of optogenetic tools.
Qiyao WEI ; Chenchen XU ; Meiyan WANG ; Haifeng YE
Chinese Journal of Biotechnology 2019;35(12):2238-2256
Dynamic variations of the cell microenvironment can affect cell differentiation, cell signaling pathways, individual growth, and disease. Optogenetics combines gene-encoded protein expression with optical controlling, and offers a novel, reversible, non-invasive and spatiotemporal-specific research tool to dynamically or reversibly regulate cell signaling pathways, subcellular localization and gene expression. This review summarizes the types of optogenetic components and the involved cellular signaling pathways, and explores the application and future prospects of the light-controlled cell signaling pathways.
Cell Differentiation
;
Light
;
Optogenetics
;
Proteins
;
Signal Transduction
7.Next-Generation Tools to Study Autonomic Regulation In Vivo.
Snigdha MUKERJEE ; Eric LAZARTIGUES
Neuroscience Bulletin 2019;35(1):113-123
The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.
Animals
;
Autonomic Pathways
;
physiology
;
Calcium Signaling
;
physiology
;
Humans
;
Nerve Net
;
physiology
;
Neurons
;
physiology
;
Optogenetics
;
methods
;
Receptors, G-Protein-Coupled
;
physiology
8.The effects of optical genetic techniques on new neurons through the Wnt/β-Catenin pathway.
Tian-Guang XIA ; Xu ZHU ; Jing-Jing WANG ; Meng-Guang WEI ; Fang-Fang LYU ; Chong CHEN ; Jun LIANG ; Wei JIANG ; Qian SUN ; Hong-Tao SUN
Chinese Journal of Applied Physiology 2019;35(3):256-261
OBJECTIVE:
To investigate the effects of optical genetic techniques on new neurons through the Wnt/β-Catenin pathway.
METHODS:
Neural stem cells (ESCs)were extracted from the cerebral cortex of fetal rat and transfected by lentivirus carrying DCX-ChR2-EGFP gene and the expression of DCX of newborn neurons differentiated from neural stem cells were observed. All cells were divided into 3 groups(n=9): control group, NSCs+EGFP and NSCs+ChR2 groups. The control group was normal cultured NSCs (NSCs group); the neural stem cells in NSCs+EGFP group were transfected with lentivirus carrying EGFP gene. The neural stem cells in NSCs+ChR2 group were infected with lentivirus carrying DCX-ChR2-EGFP gene. After 48 hours of lentivirus infection, 470 nm blue laser irradiation was performed for 3 consecutive days. NeuN positive cell density(the maturation of neural stem cells)and the ratio of NeuN/Hoechst in each group were observed. Western blot was used to detect the expression levels of MAP2, NeuN, Neurog2, NeuroD1 and GluR2. Western blot was used to detect the expressions of β-catenin and TCF4 associated with Wnt/β-catenin signaling channel. Verapamil (100 μmol/L, L-type calcium channel blockers) and Dkk1 (50 μg/ml, β-catenin inhibitor) were used to treat stem cells of the NSCs+ChR2 group and then the expressions of MAP2, NeuN, Neurog2, NeuroD1 and GluR were detected by Western blot.
RESULTS:
After 3 days of 470 nm blue laser irradiation, NeuN positive cell density(the maturation of neural stem cells)and the ratio of NeuN/Hoechst, the expression levels of the protein MAP2, NeuN, Neurog2, NeuroD1, GluR and the protein β-catenin and TCF4 associated with Wnt/β-catenin signaling channel detected by Western blot were significantly increased in the group of NSCs+ChR2, compared with NSCs and NSCs+EGFP groups. The expressions of MAP2, NeuN, Neurog2, NeuroD1 and GluR were remarkably decreased after treated by verapamil and Dkk1 in the group of NSCs+ChR2. It was proved that the opening of ChR2 channel producing cationic influx promoted the maturation of neural stem cells and induced by the Wnt/β-catenin signaling pathway.
CONCLUSION
Optical genetic promoted the maturation of newborn neurons through the Wnt/β-catenin signaling pathway.
Animals
;
Cells, Cultured
;
Neural Stem Cells
;
cytology
;
Neurons
;
cytology
;
Optogenetics
;
Rats
;
Transfection
;
Wnt Signaling Pathway
9.Advances in the simulation of light–tissue interactions in biomedical engineering
Ilya KRASNIKOV ; Alexey SETEIKIN ; Bernhard ROTH
Biomedical Engineering Letters 2019;9(3):327-337
Monte Carlo (MC) simulation for light propagation in scattering and absorbing media is the gold standard for studying the interaction of light with biological tissue and has been used for years in a wide variety of cases. The interaction of photons with the medium is simulated based on its optical properties and the original approximation of the scattering phase function. Over the past decade, with the new measurement geometries and recording techniques invented also the corresponding sophisticated methods for the description of the underlying light–tissue interaction taking into account realistic parameters and settings were developed. Applications, such as multiple scattering, optogenetics, optical coherence tomography, Raman spectroscopy, polarimetry and Mueller matrix measurement have emerged and are still constantly improved. Here, we review the advances and recent applications of MC simulation for the active field of the life sciences and the medicine pointing out the new insights enabled by the theoretical concepts.
Biological Science Disciplines
;
Biomedical Engineering
;
Optogenetics
;
Photons
;
Spectrum Analysis, Raman
;
Tomography, Optical Coherence
10.A Context-Based Analgesia Model in Rats: Involvement of Prefrontal Cortex.
Lingchi XU ; Yalan WAN ; Longyu MA ; Jie ZHENG ; Bingxuan HAN ; Feng-Yu LIU ; Ming YI ; You WAN
Neuroscience Bulletin 2018;34(6):1047-1057
Cognition and pain share common neural substrates and interact reciprocally: chronic pain compromises cognitive performance, whereas cognitive processes modulate pain perception. In the present study, we established a non-drug-dependent rat model of context-based analgesia, where two different contexts (dark and bright) were matched with a high (52°C) or low (48°C) temperature in the hot-plate test during training. Before and after training, we set the temperature to the high level in both contexts. Rats showed longer paw licking latencies in trials with the context originally matched to a low temperature than those to a high temperature, indicating successful establishment of a context-based analgesic effect in rats. This effect was blocked by intraperitoneal injection of naloxone (an opioid receptor antagonist) before the probe. The context-based analgesic effect also disappeared after optogenetic activation or inhibition of the bilateral infralimbic or prelimbic sub-region of the prefrontal cortex. In brief, we established a context-based, non-drug dependent, placebo-like analgesia model in the rat. This model provides a new and useful tool for investigating the cognitive modulation of pain.
Action Potentials
;
drug effects
;
physiology
;
Analgesics
;
pharmacology
;
therapeutic use
;
Animals
;
Disease Models, Animal
;
Electric Stimulation
;
Female
;
In Vitro Techniques
;
Naloxone
;
pharmacology
;
Narcotic Antagonists
;
pharmacology
;
Optogenetics
;
Pain
;
drug therapy
;
pathology
;
physiopathology
;
Pain Measurement
;
drug effects
;
Pain Threshold
;
drug effects
;
physiology
;
Patch-Clamp Techniques
;
Physical Stimulation
;
Prefrontal Cortex
;
drug effects
;
metabolism
;
pathology
;
Pyramidal Cells
;
drug effects
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors

Result Analysis
Print
Save
E-mail