1.Exploration of IRES Elements within the ORF of the Coxsackievirus B3 Genome.
Qin Qin SONG ; Xiao Nuan LUO ; Bing Tian SHI ; Mi LIU ; Juan SONG ; Dong XIA ; Zhi Qiang XIA ; Wen Jun WANG ; Hai Lan YAO ; Jun HAN
Biomedical and Environmental Sciences 2022;35(4):322-333
Objective:
This study aimed to identify internal ribosome entry sites (IRESs) in the open reading frame (ORF) of the Coxsackievirus B3 (CVB3) genome.
Methods:
The sequences of P1, P2, or P3 of the CVB3 genome or the truncated sequences from each antithymocyte globulin (ATG) to the end of the P1, P2, or P3 gene were inserted into the pEGFP-N1 vector. After transfection, possible IRES-dependent green fluorescent protein (GFP)-fused proteins were detected by anti-GFP western blotting. The sequences of possible IRESs were inserted into specific Fluc/Rluc bicistronic vectors, in which the potential IRESs were determined according to the Fluc/Rluc activity ratio. Expression of Fluc and Rluc mRNA of the bicistronic vector was detected by RT-qPCR.
Results:
After transfection of full length or truncated sequences of the P1, P2, or P3 plasmids, six GFP-fused protein bands in P1, six bands in P2 and nine bands in P3 were detected through western blotting. Two IRESs in VP2 (1461-1646 nt) and VP1 (2784-2983 nt) of P1; one IRES in 2C (4119-4564 nt) of P2; and two IRESs in 3C (5634-5834 nt) and 3D (6870-7087 nt) of P3 were identified according to Fluc/Rluc activity ratio. The cryptic promoter was also excluded by RT-qPCR.
Conclusion
Five IRESs are present in the CVB3 coding region.
Internal Ribosome Entry Sites/genetics*
;
Open Reading Frames
;
RNA, Messenger/genetics*
2.Genome structure and variation of Reynoutria japonica Houtt. chloroplast genome.
Mengtao SUN ; Junxin ZHANG ; Tiran HUANG ; Mingfeng YANG ; Lanqing MA ; Liusheng DUAN
Chinese Journal of Biotechnology 2022;38(5):1953-1964
Reynoutria japonica Houtt., belonging to Polygoneae of Polygonaceae, is a Chinese medicinal herb with the functions of draining dampness and relieving jaundice, clearing heat and detoxifying, dispersing blood stasis and relieving pain, and relieving cough and resolving phlegm. In this study, we carried out high-throughput sequencing for the chloroplast genome sequences of five cultivars of R. japonica and analyzed the genome structure and variations. The chloroplast genomes of the five R. japonica cultivars had two sizes (163 376 bp and 163 371 bp) and a typical circular tetrad structure composed of a large single-copy (LSC) region of 85 784 bp, a small single-copy (SSC) region of 18 616 bp, and a pair of inverted repeat (IR) regions (IRa/IRb) which are spaced apart. A total of 161 genes were obtained by annotation, which consisted of 106 protein-coding genes, 10 rRNA-coding genes, and 45 tRNA-coding genes. The total GC content was 36.7%. Specifically, the GC content in the LSC, SSC, and IR regions were 34.8%, 30.7%, and 42.7%, respectively. Comparison of the whole chloroplast genome among the five cultivars showed that trnk-UUU, rpoC1, petD, rpl16, ndhA, and rpl12 in coding regions had sequence variations. In the phylogenetic tree constructed for the 11 samples of Polygoneae, the five cultivars of R. japonica clustered into one clade near the root and was a sister group of Fallopia multiflora (Thunb.).
Base Composition
;
Genome, Chloroplast/genetics*
;
Open Reading Frames
;
Phylogeny
;
Reynoutria
3.Advances of long non-coding RNA encoded micro-peptides.
Jianfeng PAN ; Fangzheng SHANG ; Rong MA ; Min WANG ; Youjun RONG ; Lili LIANG ; Shuran NIU ; Yanbo LI ; Yunpeng QI ; Yanjun ZHANG ; Jinquan LI
Chinese Journal of Biotechnology 2022;38(9):3194-3214
Long non-coding RNA (lncRNA) refers to non-coding RNA longer than 200 nt, with one or more short open reading frames (sORF), which encode functional micro-peptides. These functional micro-peptides often play key roles in various biological processes, such as Ca2+ transport, mitochondrial metabolism, myocyte fusion, cellular senescence and others. At the same time, these biological processes play a key role in the regulation of body homeostasis, diseases and cancers development and progression, embryonic development and other important physiological processes. Therefore, studying the potential regulatory mechanisms of micro-peptides encoded by lncRNA in organisms will help to further elucidate the potential regulatory processes in organisms. Furthermore, it will provide a new theoretical basis for the subsequent targeted treatment of diseases and improvement of animal growth performance. This review summarizes the latest research progress in the field of lncRNA-encoded micro-peptides, as well as the progress in the fields of muscle physiological regulation, inflammation and immunity, common human cancers, and embryonic development. Finally, the challenges of lncRNA-encoded micro-peptides are briefly described, with the aim to facilitate subsequent in-depth research on micro-peptides.
Animals
;
Humans
;
Neoplasms/therapy*
;
Open Reading Frames
;
Peptides/chemistry*
;
RNA, Long Noncoding/genetics*
4.Analysis of the chloroplast genome characteristics of Rhus chinensis by de novo sequencing.
Ruihua ZUO ; Ping JIANG ; Chuanbo SUN ; Cunwu CHEN ; Xinjian LOU
Chinese Journal of Biotechnology 2020;36(4):772-781
Rhus chinensis is an important economic species, which could provide raw materials for pharmaceutical and industrial dyes. Rhus chinensis is famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. We report here Rhus chinensis chloroplast genomes by de novo sequencing. The results show that the length of Rhus chinensis was 159 082 bp, exhibiting a typical four-part structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The length of LSC and SSC was 85 394 bp and 18 663 bp, respectively. The genomes contained 126 genes, including 88 protein encoding genes, 8 rRNA and 30 tRNA genes. In the chloroplast genome, 61.97% of the sequence were gene coding region. In the sequence of gene encoding region, the vast majority of sequences were protein encoding region, accounting for 86.65%, followed by rRNA (10 620 bp, 10.77%) and tRNA (2 540 bp, 2.58%). In Rhus chinensis chloroplast genome, only 8 genes contain introns, all containing 1 intron except ycf3 gene (2 introns). The Rhus chinensis chloroplast genome contains 755 SSR locies. SSR mainly consists of dinucleotide and mononucleotide, accounting for 60% (453) and 28.74% (217) respectively. The clustering results show that Anacardiaceae were closest to Rhus chinensis, followed by Aceraceae and Sapindaceae. This study provides a molecular basis for the classification of Rhus chinensis.
Genome, Chloroplast
;
genetics
;
Open Reading Frames
;
Phylogeny
;
Rhus
;
classification
;
genetics
;
Sequence Analysis, DNA
5.Gene variant analysis of a patient with multiple carboxylase deficiency.
Xuesha XING ; Shuang LIU ; Ping LUO ; Fang LI ; Yuhong WU ; Shusen WANG ; Hongwei MA ; Yang LUO
Chinese Journal of Medical Genetics 2020;37(4):419-422
OBJECTIVE:
To explore the genetic basis for a patient featuring multiple carboxylase deficiency (MCD).
METHODS:
PCR and Sanger sequencing were used to detect variant in the coding region of BT and HLCS genes in the patient. Suspected variants were verified in her parents and 80 unrelated healthy controls by a PCR-restriction fragment length polymorphism (PCR-RFLP) method.
RESULTS:
The patient was found to carry compound heterozygous variants of the HLCS gene, namely c.286delG (p.Val96Leufs*162) and c.1648G>A (p.Val550Met). The c.286delG (p.Val96Leufs*162) was verified to be novel variant based on the result of PCR-RFLP analysis. No variant was found in the coding regions of BT gene in the patient.
CONCLUSION
The compound c.286delG (p.Val96Leufs*162) and c.1648G>A (p.Val550Met) variants probably underlie the MCD disorder in this patient. Above results have enriched the variant spectrum of MCA.
Carbon-Nitrogen Ligases
;
genetics
;
Exons
;
Female
;
Humans
;
Multiple Carboxylase Deficiency
;
genetics
;
Mutation
;
Open Reading Frames
;
Polymerase Chain Reaction
;
Polymorphism, Restriction Fragment Length
;
Sequence Analysis, DNA
7.Cloning,subcellular localization and spatio-temporal expression analysis of a flavonoid 3-O-glucosyltransferase gene( SmUF3GT) in Salvia miltiorrhiza.
Hong-Yan LI ; Jing-Ling LIU ; Wei-Bo JIN ; Zong-Suo LIANG
China Journal of Chinese Materia Medica 2019;44(10):2038-2045
The family of flavonoid 3-O-glucosyltransferase catalyzes the modification of anthocyanin from unstable-structure to stable-structure. In this study,based on homology cloning and transcriptome library,we isolated the full-length c DNA of UDP-glucose: flavonoid 3-O-glucosyltransferase( named SmUF3GT) from the flower tissues of S. miltiorrhiza. This gene was consisted of 1 353 bp open reading frames( ORF) encoding 450 amino acids. And the SmUF3GT protein was performed for the bioinformatic analysis. Our results showed that the protein was preliminary localized in the Golgi and peroxisome of cytosol,as well as plasma membrane and cell nuclear.QRT-PCR analyses indicated that SmUF3GT expressed differently in all tissues and organs but roots of S. miltiorrhiza and S. miltiorrhiza f.alba. During floral development,the expression of SmUF3GT showed a trend of rising fist and then down in purple-flower Danshen,whereas decreasing sharply fist and then slowly in white-flower Danshen. The present study provides basic information for further research on the network of synthesis and accumulation of flavonoids in S.miltiorrhiza.
Cloning, Molecular
;
Flowers
;
enzymology
;
Gene Expression Regulation, Plant
;
Glucosyltransferases
;
genetics
;
Open Reading Frames
;
Plant Proteins
;
genetics
;
Salvia miltiorrhiza
;
enzymology
;
genetics
8.Analysis of ANK1 gene mutation in a family with hereditary spherocytosis type Ⅰ.
Dongliang LI ; Bolun LI ; Suxin LI ; Wenjing LI ; Youjun WANG ; Xiao GUO
Chinese Journal of Medical Genetics 2019;36(10):999-1001
OBJECTIVE:
To detect the disease-causing mutation in a family with hereditary spherocytosis type Ⅰ.
METHODS:
Genomic DNA was extracted from peripheral blood samples of the proband and his relatives. Next-generation sequencing was used to detect the mutations of relevant genes. Suspected pathogenic mutation was verified by Sanger sequencing.
RESULTS:
The proband was found to harbor a novel frameshifting mutation in the coding region of ANK1 gene, which has resulted in abnormal structure or function of the protein. The mutation was confirmed by Sanger sequencing, with both his father and brother found to have carried the same mutation.
CONCLUSION
The c.247delG mutation of proband hereditary spherocytosis typeⅠin this family due to mutation of the ANK1 gene..
Ankyrins
;
genetics
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Male
;
Mutation
;
Open Reading Frames
;
Spherocytosis, Hereditary
;
genetics
9.Alternative role of noncoding RNAs: coding and noncoding properties.
Gui-Zhen ZHENG ; Wei LI ; Zhi-Yong LIU
Journal of Zhejiang University. Science. B 2019;20(11):920-927
Noncoding RNAs (ncRNAs) have played a critical role in cellular biological functions. Recently, some peptides or proteins originating from annotated ncRNAs were identified in organism development and various diseases. Here, we briefly review several novel peptides translated by annotated ncRNAs and related key functions. In addition, we summarize the potential mechanism of bifunctional ncRNAs and propose a specific "switch" triggering the transformation from the noncoding to the coding state under certain stimuli or cellular stress. The coding properties of ncRNAs and their peptide products may provide a novel horizon in proteomic research and can be regarded as a potential therapeutic target for the treatment of various diseases.
Animals
;
Calcium/metabolism*
;
Humans
;
Open Reading Frames
;
Protein Biosynthesis
;
RNA, Messenger/genetics*
;
RNA, Untranslated/physiology*
10.A novel endogenous badnavirus exists in Alhagi sparsifolia.
Yong-Chao LI ; Jian-Guo SHEN ; Guo-Huan ZHAO ; Qin YAO ; Wei-Min LI
Journal of Zhejiang University. Science. B 2018;19(4):274-284
We report the recovery of a 7068-nt viral sequence from the "viral fossils" embedded in the genome of Alhagi sparsifolia, a typical desert plant. Although the full viral genome remains to be completed, the putative genome structure, the deduced amino acids and phylogenetic analysis unambiguously demonstrate that this viral sequence represents a novel species of the genus Badnavirus. The putative virus is tentatively termed Alhagi bacilliform virus (ABV). Southern blotting and inverse polymerase chain reaction (PCR) data indicate that the ABV-related sequence is integrated into the A. sparsifolia genome, and probably does not give rise to functional episomal virus. Molecular evidence that the ABV sequence exists widely in A. sparsifolia is also presented. To our knowledge, this is the first endogenous badnavirus identified from plants in the Gobi desert, and may provide new clues on the evolution, geographical distribution as well as the host range of the badnaviruses.
Badnavirus/genetics*
;
Biological Evolution
;
Desert Climate
;
Fabaceae/virology*
;
Genes, Plant
;
Genetic Variation
;
Genome, Viral
;
Geography
;
Open Reading Frames
;
Phylogeny
;
Plant Diseases/virology*
;
Plasmids
;
Sequence Analysis, RNA

Result Analysis
Print
Save
E-mail