1.Exploring methylation signatures for high de novo recurrence risk in hepatocellular carcinoma
Da-Won KIM ; Jin Hyun PARK ; Suk Kyun HONG ; Min-Hyeok JUNG ; Ji-One PYEON ; Jin-Young LEE ; Kyung-Suk SUH ; Nam-Joon YI ; YoungRok CHOI ; Kwang-Woong LEE ; Young-Joon KIM
Clinical and Molecular Hepatology 2025;31(2):563-576
Background/Aims:
Hepatocellular carcinoma (HCC) exhibits high de novo recurrence rates post-resection. Current post-surgery recurrence prediction methods are limited, emphasizing the need for reliable biomarkers to assess recurrence risk. We aimed to develop methylation-based markers for classifying HCC patients and predicting their risk of de novo recurrence post-surgery.
Methods:
In this retrospective cohort study, we analyzed data from HCC patients who underwent surgical resection in Korea, excluding those with recurrence within one year post-surgery. Using the Infinium Methylation EPIC array on 140 samples in the discovery cohort, we classified patients into low- and high-risk groups based on methylation profiles. Distinctive markers were identified through random forest analysis. These markers were validated in the cancer genome atlas (n=217), Validation cohort 1 (n=63) and experimental Validation using a methylation-sensitive high-resolution melting (MS-HRM) assay in Validation cohort 1 and Validation cohort 2 (n=63).
Results:
The low-risk recurrence group (methylation group 1; MG1) showed a methylation average of 0.73 (95% confidence interval [CI] 0.69–0.77) with a 23.5% recurrence rate, while the high-risk group (MG2) had an average of 0.17 (95% CI 0.14–0.20) with a 44.1% recurrence rate (P<0.03). Validation confirmed the applicability of methylation markers across diverse populations, showing high accuracy in predicting the probability of HCC recurrence risk (area under the curve 96.8%). The MS-HRM assay confirmed its effectiveness in predicting de novo recurrence with 95.5% sensitivity, 89.7% specificity, and 92.2% accuracy.
Conclusions
Methylation markers effectively classified HCC patients by de novo recurrence risk, enhancing prediction accuracy and potentially offering personalized management strategies.
2.Exploring methylation signatures for high de novo recurrence risk in hepatocellular carcinoma
Da-Won KIM ; Jin Hyun PARK ; Suk Kyun HONG ; Min-Hyeok JUNG ; Ji-One PYEON ; Jin-Young LEE ; Kyung-Suk SUH ; Nam-Joon YI ; YoungRok CHOI ; Kwang-Woong LEE ; Young-Joon KIM
Clinical and Molecular Hepatology 2025;31(2):563-576
Background/Aims:
Hepatocellular carcinoma (HCC) exhibits high de novo recurrence rates post-resection. Current post-surgery recurrence prediction methods are limited, emphasizing the need for reliable biomarkers to assess recurrence risk. We aimed to develop methylation-based markers for classifying HCC patients and predicting their risk of de novo recurrence post-surgery.
Methods:
In this retrospective cohort study, we analyzed data from HCC patients who underwent surgical resection in Korea, excluding those with recurrence within one year post-surgery. Using the Infinium Methylation EPIC array on 140 samples in the discovery cohort, we classified patients into low- and high-risk groups based on methylation profiles. Distinctive markers were identified through random forest analysis. These markers were validated in the cancer genome atlas (n=217), Validation cohort 1 (n=63) and experimental Validation using a methylation-sensitive high-resolution melting (MS-HRM) assay in Validation cohort 1 and Validation cohort 2 (n=63).
Results:
The low-risk recurrence group (methylation group 1; MG1) showed a methylation average of 0.73 (95% confidence interval [CI] 0.69–0.77) with a 23.5% recurrence rate, while the high-risk group (MG2) had an average of 0.17 (95% CI 0.14–0.20) with a 44.1% recurrence rate (P<0.03). Validation confirmed the applicability of methylation markers across diverse populations, showing high accuracy in predicting the probability of HCC recurrence risk (area under the curve 96.8%). The MS-HRM assay confirmed its effectiveness in predicting de novo recurrence with 95.5% sensitivity, 89.7% specificity, and 92.2% accuracy.
Conclusions
Methylation markers effectively classified HCC patients by de novo recurrence risk, enhancing prediction accuracy and potentially offering personalized management strategies.
3.Exploring methylation signatures for high de novo recurrence risk in hepatocellular carcinoma
Da-Won KIM ; Jin Hyun PARK ; Suk Kyun HONG ; Min-Hyeok JUNG ; Ji-One PYEON ; Jin-Young LEE ; Kyung-Suk SUH ; Nam-Joon YI ; YoungRok CHOI ; Kwang-Woong LEE ; Young-Joon KIM
Clinical and Molecular Hepatology 2025;31(2):563-576
Background/Aims:
Hepatocellular carcinoma (HCC) exhibits high de novo recurrence rates post-resection. Current post-surgery recurrence prediction methods are limited, emphasizing the need for reliable biomarkers to assess recurrence risk. We aimed to develop methylation-based markers for classifying HCC patients and predicting their risk of de novo recurrence post-surgery.
Methods:
In this retrospective cohort study, we analyzed data from HCC patients who underwent surgical resection in Korea, excluding those with recurrence within one year post-surgery. Using the Infinium Methylation EPIC array on 140 samples in the discovery cohort, we classified patients into low- and high-risk groups based on methylation profiles. Distinctive markers were identified through random forest analysis. These markers were validated in the cancer genome atlas (n=217), Validation cohort 1 (n=63) and experimental Validation using a methylation-sensitive high-resolution melting (MS-HRM) assay in Validation cohort 1 and Validation cohort 2 (n=63).
Results:
The low-risk recurrence group (methylation group 1; MG1) showed a methylation average of 0.73 (95% confidence interval [CI] 0.69–0.77) with a 23.5% recurrence rate, while the high-risk group (MG2) had an average of 0.17 (95% CI 0.14–0.20) with a 44.1% recurrence rate (P<0.03). Validation confirmed the applicability of methylation markers across diverse populations, showing high accuracy in predicting the probability of HCC recurrence risk (area under the curve 96.8%). The MS-HRM assay confirmed its effectiveness in predicting de novo recurrence with 95.5% sensitivity, 89.7% specificity, and 92.2% accuracy.
Conclusions
Methylation markers effectively classified HCC patients by de novo recurrence risk, enhancing prediction accuracy and potentially offering personalized management strategies.
4.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
5.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
6.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
7.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
8.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
9.Effectiveness of Live-Streaming Tele-Exercise Intervention in Patients With Parkinson’s Disease: A Pilot Study
Jongmok HA ; Jung Hyun PARK ; Jun Seok LEE ; Hye Young KIM ; Ji One SONG ; Jiwon YOO ; Jong Hyeon AHN ; Jinyoung YOUN ; Jin Whan CHO
Journal of Movement Disorders 2024;17(2):189-197
Objective:
Exercise can improve both motor and nonmotor symptoms in people with Parkinson’s disease (PwP), but there is an unmet need for accessible and sustainable exercise options. This study aimed to evaluate the effect, feasibility, and safety of a regularly performed live-streaming tele-exercise intervention for PwP.
Methods:
A live-streaming exercise intervention for PwP was implemented twice a week for 12 weeks. We measured the motor and nonmotor symptom scores of the included patients before and after the intervention. Changes in clinical scores from baseline to postintervention were analyzed using paired t-tests. Factors associated with improvements in clinical scores and compliance were analyzed using Pearson’s correlation analysis.
Results:
Fifty-six participants were enrolled in the study. There were significant improvements in Hospital Anxiety and Depression Scale (HADS)-anxiety (p = 0.007), HADS-depression (p < 0.001), Unified Parkinson’s Disease Rating Scale (UPDRS) part III (p < 0.001), UPDRS total (p = 0.015), Hoehn and Yahr stage (p = 0.027), and Parkinson’s Disease Fatigue Scale-16 (p = 0.026) scores after the intervention. Improvements in motor symptoms were associated with improvements in mood symptoms and fatigue. Higher motor impairment at baseline was associated with a greater compliance rate and better postintervention composite motor and nonmotor outcomes (ΔUPDRS total score). Overall, the 12-week tele-exercise program was feasible and safe for PwP. No adverse events were reported. The overall adherence rate was 60.0% in our cohort, and 83.4% of the participants were able to participate in more than half of the exercise routines.
Conclusion
The live-streaming tele-exercise intervention is a safe, feasible, and effective nonpharmacological treatment option that can alleviate fatigue and improve mood and motor symptoms in PwP.
10.Erratum: Assessment of Disease Severity and Quality of Life in Patients with Atopic Dermatitis from South Korea
Sang Wook SON ; Ji Hyun LEE ; Jiyoung AHN ; Sung Eun CHANG ; Eung Ho CHOI ; Tae Young HAN ; Yong Hyun JANG ; Hye One KIM ; Moon-Bum KIM ; You Chan KIM ; Hyun Chang KO ; Joo Yeon KO ; Sang Eun LEE ; Yang Won LEE ; Bark-Lynn LEW ; Chan Ho NA ; Chang Ook PARK ; Chun Wook PARK ; Kui Young PARK ; Kun PARK ; Young Lip PARK ; Joo Young ROH ; Young-Joon SEO ; Min Kyung SHIN ; Sujin LEE ; Sang Hyun CHO
Annals of Dermatology 2023;35(1):86-87

Result Analysis
Print
Save
E-mail