1.Clinical Study on the Relationship between Gene Mutation Profile and Prognosis in Pediatric Acute Lymphocyte Leukemia.
Yan CHEN ; Shan-Shan QI ; Li-Li DING ; Yu DU ; Na SONG ; Zhuo WANG ; Li YANG ; Ming SUN ; Hao XIONG
Journal of Experimental Hematology 2023;31(1):17-24
OBJECTIVE:
To analyze the gene mutation profile in children with acute lymphocyte leukemia (ALL) and to explore its prognostic significance.
METHODS:
Clinical data of 249 primary pediatric ALL patients diagnosed and treated in the Department of Hematological Oncology of Wuhan Children's Hospital from January 2018 to December 2021 were analyzed retrospectively. Next-generation sequencing (NGS) was used to obtain gene mutation data and analyze the correlation between it and the prognosis of children with ALL.
RESULTS:
227 (91.2%) were B-ALL, 22 (8.8%) were T-ALL among the 249 cases, and 178 (71.5%) were found to have gene mutations, of which 85 (34.1%) had ≥3 gene mutations. NRAS(23.7%), KRAS (22.9%),FLT3(11.2%), PTPN11(8.8%), CREBBP (7.2%), NOTCH1(6.4%) were the most frequently mutated genes, the mutations of KRAS, FLT3, PTPN11, CREBBP were mainly found in B-ALL, the mutations of NOTCH1 and FBXW7 were mainly found in T-ALL. The gene mutation incidence of T-ALL was significantly higher than that of B-ALL (χ2= 5.573,P<0.05) and were more likely to have co-mutations (P<0.05). The predicted 4-year EFS rate (47.9% vs 88.5%, P<0.001) and OS rate (53.8% vs 94.1%, P<0.001) in children with tp53 mutations were significantly lower than those of patients without tp53 mutations. Patients with NOTCH1 mutations had higher initial white blood cell count (128.64×109/L vs 8.23×109/L,P<0.001), and children with NOTCH1 mutations had a lower 4-year EFS rate than those of without mutations (71.5% vs 87.2%, P=0.037).
CONCLUSION
Genetic mutations are prevalent in childhood ALL and mutations in tp53 and NOTCH1 are strong predictors of adverse outcomes in childhood ALL, with NGS contributing to the discovery of genetic mutations and timely adjustment of treatment regimens.
Child
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Cell Cycle Proteins/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Retrospective Studies
;
Ubiquitin-Protein Ligases/genetics*
;
Prognosis
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
;
Mutation
;
Lymphocytes
2.USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer.
Dexin YANG ; Yuqin FENG ; Haohua LU ; Kelie CHEN ; Jinming XU ; Peiwei LI ; Tianru WANG ; Dajing XIA ; Yihua WU
Journal of Zhejiang University. Science. B 2023;24(2):143-156
This study aimed to identify subtypes of genomic variants associated with the efficacy of immune checkpoint inhibitors (ICIs) by conducting systematic literature search in electronic databases up to May 31, 2021. The main outcomes including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and durable clinical benefit (DCB) were correlated with tumor genomic features. A total of 1546 lung cancer patients with available genomic variation data were included from 14 studies. The Kirsten rat sarcoma viral oncogene homolog G12C (KRASG12C) mutation combined with tumor protein P53 (TP53) mutation revealed the promising efficacy of ICI therapy in these patients. Furthermore, patients with epidermal growth factor receptor (EGFR) classical activating mutations (including EGFRL858R and EGFRΔ19) exhibited worse outcomes to ICIs in OS (adjusted hazard ratio (HR), 1.40; 95% confidence interval (CI), 1.01‒1.95; P=0.0411) and PFS (adjusted HR, 1.98; 95% CI, 1.49‒2.63; P<0.0001), while classical activating mutations with EGFRT790M showed no difference compared to classical activating mutations without EGFRT790M in OS (adjusted HR, 0.96; 95% CI, 0.48‒1.94; P=0.9157) or PFS (adjusted HR, 0.72; 95% CI, 0.39‒1.35; P=0.3050). Of note, for patients harboring the Usher syndrome type-2A(USH2A) missense mutation, correspondingly better outcomes were observed in OS (adjusted HR, 0.52; 95% CI, 0.32‒0.82; P=0.0077), PFS (adjusted HR, 0.51; 95% CI, 0.38‒0.69; P<0.0001), DCB (adjusted odds ratio (OR), 4.74; 95% CI, 2.75‒8.17; P<0.0001), and ORR (adjusted OR, 3.45; 95% CI, 1.88‒6.33; P<0.0001). Our findings indicated that, USH2A missense mutations and the KRASG12Cmutation combined with TP53 mutation were associated with better efficacy and survival outcomes, but EGFR classical mutations irrespective of combination with EGFRT790M showed the opposite role in the ICI therapy among lung cancer patients. Our findings might guide the selection of precise targets for effective immunotherapy in the clinic.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Extracellular Matrix Proteins/genetics*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Lung Neoplasms/genetics*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Treatment Outcome
3.Research Progress of Proteolysis Targeting Chimeria in NSCLC Therapy.
Lin JIANG ; Jingbo ZHANG ; Jiaqi HU ; Haixiang QI ; Heng XU
Chinese Journal of Lung Cancer 2022;25(7):477-481
Proteolysis targeting chimeria (PROTAC) degrades target proteins by utilizing the ubiquitin-proteasome pathway, subverting the concept of traditional small molecule inhibitors. Among the common mutation targets of non-small cell lung cancer (NSCLC), PROTAC technology has successfully achieved the effective degradation of kirsten rat sarcoma viral oncogene homolog (KRAS), epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK ) and other proteins in preclinical studies. PROTAC drugs with their unique event-driven advantages, are expected to overcome acquired drug resistance caused by small molecule inhibitors and show good therapeutic potential for undruggable targets, thereby providing a new strategy for the treatment of NSCLC.
.
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Lung Neoplasms/pathology*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Proteolysis
;
Proto-Oncogene Proteins p21(ras)/genetics*
4.Association between EGFR, ALK and KRAS Gene Status and Synchronous Distant Organ Metastasis in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2018;21(7):536-542
Lung cancer is the leading cause of morbidity and mortality of malignant diseases in China. Approximately 57% lung cancer patients harbored distant metastases at initial diagnosis which is relevant to poor outcomes. The research strategy of anti-lung cancer metastasis now has became the new treatment directions and thoughts for lung cancer treatment. Previous studies have shown that changes in the corresponding driving genes on different signaling pathways may be related to the transfer of different organs, and the biological alteration of tumor to some extent can affect the metastatic behavior and metastatic pattern of tumor. However, current clinical and basic studies have not elucidated the molecular mechanism of the specific distant organ metastasis in the pathway of lung cancer related signal transduction, clinical research on the correlation between gene mutation and organ transfer specificity is also relatively rare. This review aims to summarize the characteristics of the expression of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), V-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue (KRAS) in non-small cell lung cancer, and the correlation between the distribution of metastatic organs.
.
Anaplastic Lymphoma Kinase
;
Carcinoma, Non-Small-Cell Lung
;
genetics
;
pathology
;
ErbB Receptors
;
genetics
;
Humans
;
Lung Neoplasms
;
genetics
;
pathology
;
Neoplasm Metastasis
;
Proto-Oncogene Proteins p21(ras)
;
genetics
;
Receptor Protein-Tyrosine Kinases
;
genetics
5.IκB kinase b Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16Cervical Cancer Cells.
Zhi-Hui TAN ; Yu ZHANG ; Yan TIAN ; Wei TAN ; Ying-Hua LI
Chinese Medical Journal 2016;129(22):2703-2707
BACKGROUNDCervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor.
METHODSThirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16- (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated.
RESULTSThe expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16- (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells.
CONCLUSIONSIKKβ may mediate the downregulation of p53 and p21 by LPS in HPV16+ cervical cancer cells.
Cell Line, Tumor ; Down-Regulation ; drug effects ; Female ; Human papillomavirus 16 ; pathogenicity ; Humans ; I-kappa B Kinase ; antagonists & inhibitors ; metabolism ; Lipopolysaccharides ; pharmacology ; Proto-Oncogene Proteins p21(ras) ; metabolism ; Thiophenes ; pharmacology ; Tumor Suppressor Protein p53 ; metabolism ; Uterine Cervical Neoplasms ; metabolism ; virology
6.Concomitance of P-gp/LRP Expression with EGFR Mutations in Exons 19 and 21 in Non-Small Cell Lung Cancers.
Hong WEI ; Weipeng LU ; Mei LI ; Qiuping ZHANG ; Shen LU
Yonsei Medical Journal 2016;57(1):50-57
PURPOSE: Traditional chemotherapy is the main adjuvant therapy for the treatment of non-small cell lung cancer (NSCLC). However, the emergence of multi-drug resistance (MDR) has greatly restricted the curative effect of chemotherapy. Therefore, it is necessary to find a method to treat MDR NSCLC clinically. It is worth investigating whether NSCLCs that are resistant to traditional chemotherapy can be effectively treated with tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR). MATERIALS AND METHODS: The expression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) was detected by immunohistochemistry, and mutations in EGFR (exons 19 and 21) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (exon 2) were detected by high-resolution melting analysis (HRMA) of surgical NSCLC specimens from 127 patients who did not undergo traditional chemotherapy or radiotherapy. A Pearson chi-square test was performed to analyze the correlations between the expression of P-gp and LRP and mutations in EGFR and KRAS. RESULTS: The expression frequencies of P-gp and LRP were significantly higher in adenocarcinomas from non-smoking patients; the expression frequency of LRP was significantly higher in cancer tissue from female patients. The frequency of EGFR mutations was significantly higher in well to moderately differentiated adenocarcinomas from non-smoking female patients. The frequency of EGFR mutations in the cancers that expressed P-gp, LRP, or both P-gp and LRP was significantly higher than that in cancers that did not express P-gp or LRP. CONCLUSION: NSCLCs expressing P-gp/LRP bear the EGFR mutation in exon 19 or 21 easily.
Aged
;
Aged, 80 and over
;
Carcinoma, Non-Small-Cell Lung/*genetics/surgery
;
Exons/*genetics
;
Female
;
Humans
;
Lung Neoplasms/*genetics/pathology/surgery
;
Middle Aged
;
Mutation
;
P-Glycoprotein/*genetics
;
Protein Kinase Inhibitors/therapeutic use
;
Proto-Oncogene Proteins/*genetics
;
Proto-Oncogene Proteins p21(ras)
;
Receptor, Epidermal Growth Factor/*genetics
;
Treatment Outcome
;
Vault Ribonucleoprotein Particles/*genetics
;
ras Proteins/*genetics
7.Growth inhibition of combined pathway inhibitors on KRAS mutated non-small cell lung cancer cell line.
Zhan-wen LI ; Zhen-li YANG ; Hai-liang FENG ; Xiao-cui BIAN ; Yan-yan LIU ; Yu-qin LIU
Chinese Journal of Pathology 2013;42(5):330-335
OBJECTIVETo investigate the effect of the selective PI3K inhibitor and MEK inhibitor on KRAS and PTEN co-mutated non-small cell lung cancer cell line NCI-H157 and the relevant mechanisms.
METHODSNCI-H157 was cultured routinely and treated with different concentrations of the two inhibitors. Cell proliferation was detected by MTT cell cycle assay. Based on the MTT results the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941, 0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244 + 0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244 + 5.0 µmol/L GDC-0941). Colony formation assay was performed to detect colony formation efficiency. The cell cycle and apoptosis were analyzed by flow cytometry. The expression of protein related to apoptosis was tested with Western blot.
RESULTSCell growth was inhibited by the two inhibitors. Combination groups led to stronger cell proliferation inhibition: combination group Ishowed synergistic effect of their actions and combination group II showed an additive effect; in both groups, there were decreased colony number [(77.2 ± 1.54)/well vs (61.50 ± 2.12)/well, P < 0.01] and [(51.00 ± 4.00)/ well vs (22.50 ± 3.53)/well, P < 0.01]; and enhanced apoptotic ratios [(18.30 ± 0.82)% vs (21.32 ± 0.56)%, P < 0.01] and [(27.14 ± 1.58)% vs (42.45 ± 4.42)%, P < 0.01]. In addition, compared to the PI3K inhibitor alone group, the NCI-H157 cells in the combination groups showed increased G0/G1 phase and decreased S phase (P < 0.01). Western blotting showed that the combination groups demonstrated significantly decreased expression of cyclin D1 and cyclin B1, increased p21 and cleaved PARP and decreased bcl-2/bax ratio, compared to the PI3K inhibitor only group.
CONCLUSIONThe combined inhibition of PI3K (AZD6244) and MEK (GDC-0941) has synergistic effects on the proliferation of NCI-H157 cells, but such effects appear to be in a dose-dependent manner.
Apoptosis ; drug effects ; Benzimidazoles ; administration & dosage ; pharmacology ; Carcinoma, Non-Small-Cell Lung ; genetics ; pathology ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cyclin B1 ; metabolism ; Cyclin D1 ; metabolism ; Dose-Response Relationship, Drug ; Drug Synergism ; Humans ; Indazoles ; administration & dosage ; pharmacology ; Lung Neoplasms ; genetics ; pathology ; Mitogen-Activated Protein Kinase Kinases ; antagonists & inhibitors ; metabolism ; Mutation ; PTEN Phosphohydrolase ; genetics ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; metabolism ; Poly(ADP-ribose) Polymerases ; metabolism ; Proto-Oncogene Proteins ; genetics ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Proto-Oncogene Proteins p21(ras) ; metabolism ; Signal Transduction ; Sulfonamides ; administration & dosage ; pharmacology ; bcl-2-Associated X Protein ; metabolism ; ras Proteins ; genetics
8.Immunophenotypes and gene mutations in colorectal precancerous lesions and adenocarcinoma.
Wen-ting HUANG ; Tian QIU ; Yun LING ; Su-sheng SHI ; Lei GUO ; Bo ZHENG ; Ning LÜ ; Jian-ming YING
Chinese Journal of Pathology 2013;42(10):655-659
OBJECTIVETo analyze immunophenotypes and gene mutations of colorectal precancerous lesions and adenocarcinoma, and to compare the difference of carcinogenetic mechanisms between the two precancerous lesions.
METHODSFifty-three cases of colorectal serrated lesions including 30 hyperplastic polyps, 20 sessile serrated adenomas (SSA) and 3 mixed polyps were collected from January 2006 to June 2012.Forty-five cases of traditional adenomas and 50 cases of colorectal adenocarcinomas were also recruited. Thirty hyperplastic polyps, 20 cases of SSA, 3 mixed polyps and 45 traditional adenomas were investigated by immunohistochemistry for the expression of DNA mismatch repair (MMR) proteins (MLH1, MSH2 and MSH6) and DNA methyltransferase MGMT. Mutations of KRAS, BRAF and PIK3CA genes in 10 cases of SSAs, 10 traditional adenomas, 1 mixed polyps and 50 colorectal adenocarcinomas were analyzed by PCR followed by direct Sanger sequencing.
RESULTS(1) Only 3 cases of hyperplastic polyps lost MLH1 expression, and none of SSAs or traditional adenomas showed loss of MLH1. The negative expression rates of MSH2, MSH6 and MGMT in hyperplastic polyps and SSA were significantly higher than those of traditional adenomas. (2) KRAS mutation was found in 5/10 cases of SSAs, 5/10 traditional adenomas and 1/1 mixed polyps. (3) Colorectal adenocarcinomas harbored the mutations of KRAS (48%, 24/50), BRAF (6%, 3/50) and PIK3CA (4%, 2/50).
CONCLUSIONSImmunophenotypic and gene mutation profiles are different between colorectal serrated lesion and traditional adenoma. Alterations of MMR and MGMT expression play important roles in the pathogenesis of "serrated neoplasm". KRAS mutation is a significant genetic change in the early phase of colorectal carcinogenesis.
Adaptor Proteins, Signal Transducing ; metabolism ; Adenocarcinoma ; genetics ; metabolism ; Adenoma ; genetics ; metabolism ; Aged ; Class I Phosphatidylinositol 3-Kinases ; Colonic Polyps ; genetics ; metabolism ; Colorectal Neoplasms ; genetics ; metabolism ; DNA Mismatch Repair ; DNA Modification Methylases ; metabolism ; DNA Repair Enzymes ; metabolism ; DNA, Neoplasm ; metabolism ; DNA-Binding Proteins ; metabolism ; Female ; Humans ; Hyperplasia ; Immunophenotyping ; Male ; Middle Aged ; MutL Protein Homolog 1 ; MutS Homolog 2 Protein ; metabolism ; Nuclear Proteins ; metabolism ; Phosphatidylinositol 3-Kinases ; genetics ; Point Mutation ; Precancerous Conditions ; genetics ; metabolism ; Proto-Oncogene Proteins ; genetics ; Proto-Oncogene Proteins B-raf ; genetics ; Proto-Oncogene Proteins p21(ras) ; Sequence Analysis, DNA ; Tumor Suppressor Proteins ; metabolism ; ras Proteins ; genetics
9.Expression of Id1 and Id3 in endometrial carcinoma and their roles in regulating biological behaviors of endometrial carcinoma cells in vitro.
Lili SUN ; Xuenong LI ; Guobing LIU
Journal of Southern Medical University 2013;33(6):812-818
OBJECTIVETo investigate the expression of inhibitor of DNA differentiation/DNA binding 1 (Id1) and Id3 in endometrial carcinoma and explore their roles in regulating the proliferation, invasion, migration and adhesion of endometrial carcinoma cells in vitro.
METHODSId1 and Id3 expression in 4 fresh endometrial cancer tissue specimens and matched adjacent tissues were detected using Western blotting. Two endometrial cancer cell lines, HEC-1-B and RL-952, were both divided into 4 groups, namely the untreated group, blank virus group, promoter group and Id1/Id3 double-knockdown group, and their expressions of MMP2, CXCR4 and P21 were detected by qRT-PCR and Western blotting. The proliferation, invasion, migration and adhesion of the cells were evaluated with MTT, Transwell, wound-healing, and adhesion assays.
RESULTSEndometrial carcinoma tissues showed significantly higher Id1 and Id3 expression than the adjacent tissues (P<0.05). In the two endometrial carcinoma cell lines, Id1/Id3 double-knockdown significantly decreased MMP2 and CXCR4 expression and increased P21 expression at both mRNA and protein levels (P<0.05), and resulted in suppressed cell proliferation, invasion, migration and adhesion.
CONCLUSIONId1 and Id3 expressions are up-regulated in endometrial carcinoma to promote the proliferation, invasion, migration and adhesion of the tumor cells by increasing MMP2 and CXCR4 expression and reducing P21 expression. Therapies targeting Id1/Id3 can be a novel strategy for treatment of endometrial carcinoma.
Cell Adhesion ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Endometrial Neoplasms ; metabolism ; pathology ; Female ; Humans ; Inhibitor of Differentiation Protein 1 ; metabolism ; Inhibitor of Differentiation Proteins ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Neoplasm Proteins ; metabolism ; Proto-Oncogene Proteins p21(ras) ; metabolism ; RNA Interference ; Receptors, CXCR4 ; metabolism
10.Impact of genetic alterations on mTOR-targeted cancer therapy.
Chinese Journal of Cancer 2013;32(5):270-274
Rapamycin and its derivatives (rapalogs), a group of allosteric inhibitors of mammalian target of rapamycin (mTOR), have been actively tested in a variety of cancer clinical trials, and some have been approved by the Food and Drug Administration for the treatment of certain types of cancers. However, the single agent activity of these compounds in many tumor types remains modest. The mTOR axis is regulated by multiple upstream signaling pathways. Because the genes (e.g., PIK3CA, KRAS, PTEN, and LKB1) that encode key components in these signaling pathways are frequently mutated in human cancers, a subset of cancer types may be addicted to a given mutation, leading to hyperactivation of the mTOR axis. Thus, efforts have been made to demonstrate the potential impact of genetic alterations on rapalog-based or mTOR-targeted cancer therapy. This review will primarily summarize research advances in this direction.
Antibiotics, Antineoplastic
;
therapeutic use
;
Cell Line, Tumor
;
Class I Phosphatidylinositol 3-Kinases
;
Humans
;
Mutation
;
Neoplasms
;
drug therapy
;
metabolism
;
PTEN Phosphohydrolase
;
genetics
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Proto-Oncogene Proteins p21(ras)
;
Signal Transduction
;
Sirolimus
;
analogs & derivatives
;
therapeutic use
;
TOR Serine-Threonine Kinases
;
antagonists & inhibitors
;
metabolism
;
ras Proteins
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail