1.Carfilzomib inhibits the growth of lung adenocarcinoma via upregulation of Gadd45a expression.
Fang YANG ; Wang-Wang LIU ; Hui CHEN ; Jia ZHU ; Ai-Hua HUANG ; Fei ZHOU ; Yi GAN ; Yan-Hua ZHANG ; Li MA
Journal of Zhejiang University. Science. B 2020;21(1):64-76
Proteasome inhibitors have shown remarkable success in the treatment of hematologic neoplasm. There has been a lot of attention to applying these drugs for solid tumor treatment. Recent preclinical study has signified the effectiveness on cell proliferation inhibition in lung adenocarcinoma treated by carfilzomib (CFZ), a second generation proteasome inhibitor. However, no insight has been gained regarding the mechanism. In this study, we have systematically investigated the CFZ functions in cell proliferation and growth, cell cycle arrest, and apoptosis in lung adenocarcinoma cells. Flow cytometry experiments showed that CFZ significantly induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma. MTS and colony formation assays revealed that CFZ substantially inhibited survival of lung adenocarcinoma cells. All results were consistently correlated to the upregulation expression of Gadd45a, which is an important gene in modulating cell cycle arrest and apoptosis in response to physiologic and environmental stresses. Here, upregulation of Gadd45a expression was observed after CFZ treatment. Knocking down Gadd45a expression suppressed G2/M arrest and apoptosis in CFZ-treated cells, and reduced cytotoxicity of this drug. The protein expression analysis has further identified that the AKT/FOXO3a pathway is involved in Gadd45a upregulation after CFZ treatment. These findings unveil a novel mechanism of proteasome inhibitor in anti-solid tumor activity, and shed light on novel preferable therapeutic strategy for lung adenocarcinoma. We believe that Gadd45a expression can be a highly promising candidate predictor in evaluating the efficacy of proteasome inhibitors in solid tumor therapy.
Adenocarcinoma of Lung/pathology*
;
Apoptosis/drug effects*
;
Cell Cycle Checkpoints/drug effects*
;
Cell Cycle Proteins/genetics*
;
Cell Line, Tumor
;
Forkhead Box Protein O3/physiology*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Humans
;
Lung Neoplasms/pathology*
;
Oligopeptides/pharmacology*
;
Proto-Oncogene Proteins c-akt/physiology*
;
Up-Regulation
2.Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum.
Yixian QUAH ; Nor Ismaliza MOHD ISMAIL ; Jillian Lean Sim OOI ; Yang Amri AFFENDI ; Fazilah ABD MANAN ; Lai-Kuan TEH ; Fai-Chu WONG ; Tsun-Thai CHAI
Journal of Zhejiang University. Science. B 2019;20(1):59-70
Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
Amino Acid Sequence
;
Animals
;
Anthozoa/chemistry*
;
Antineoplastic Agents/pharmacology*
;
Chromatography, Gel
;
Chromatography, High Pressure Liquid
;
Chromatography, Reverse-Phase
;
Cytotoxins/pharmacology*
;
Drug Discovery
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Hydrolysis
;
Marine Toxins/pharmacology*
;
Oligopeptides/pharmacology*
;
Solid Phase Extraction
;
Tandem Mass Spectrometry
3.Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells.
Guo-Qiang ZHANG ; Yong-Kang TAO ; Yong-Ping BAI ; Sheng-Tao YAN ; Shui-Ping ZHAO
Chinese Medical Journal 2018;131(8):950-955
BackgroundOxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells.
MethodsHuman umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P < 0.05 was considered statistically significant.
ResultsExposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P < 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P < 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P < 0.05) and phosphorylation of eIF2α (451.6%, P < 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P < 0.05, compared with control group) and phosphorylation of eIF2α (407.8%, 339.1%, 187.5%, F = 11.430, all P < 0.05, compared with control group). In contrast, DEVD-CHO treatment had no significant effect on ox-LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment.
ConclusionsThis study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.
Apoptosis ; drug effects ; Cells, Cultured ; Endoplasmic Reticulum Stress ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; Humans ; Lipoproteins, LDL ; pharmacology ; Oligopeptides ; pharmacology ; Simvastatin ; pharmacology
4.Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers.
Yang HUANG ; Jinsong KONG ; Xiaokang GONG ; Xin ZHENG ; Haibao WANG ; Jianwei RUAN
Journal of Zhejiang University. Medical sciences 2017;46(6):593-599
Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P<0.05). The immunofluorescence staining and MTT results indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P<0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.
3T3 Cells
;
Animals
;
Biocompatible Materials
;
Bone Cements
;
chemistry
;
metabolism
;
pharmacology
;
Calcium Phosphates
;
metabolism
;
Cell Proliferation
;
drug effects
;
Chitosan
;
chemistry
;
pharmacology
;
Mice
;
Nanofibers
;
chemistry
;
Oligopeptides
;
chemistry
5.Effect of Artesunate on Proliferation, Cell Cycle and Apoptosis of SKM-1 Cells and Its Underlying Mechanisms.
Shu-Kai QIAO ; Ying WANG ; Zhi-Yun NIU ; Jin-Man TAN ; Jun-Li WANG ;
Journal of Experimental Hematology 2016;24(1):131-137
OBJECTIVETo investigate the effects of artesunate (ART) on proliferation, cell cycle and apoptosis of SKM-1 cells in vitro and to explore the underlying mechanisms.
METHODSAfter SKM-1 cells were treated with different concentrations of ART, the cell proliferation was determined by CCK-8 method. Apoptosis and distribution of cell cycle were detected by flow cytometry. Both DCFH-DA fluorescent probe and Fluo-3-Am fluorescent probe were used to detect the changes of intracellular reactive oxygen species (ROS) and calcium ion concentration. Western blot was used to measure the protein levels of BCL-2, BAX, BAD, P-BAD, survivin and XIAP.
RESULTSART obviously inhibited the growth of SKM-1 cells in time and dose-dependent manners (r = -0.841; r = 0.-786). The antioxidant trolox-pretreatment significantly decreased the growth inhibition effect of ART on SKM-1 cells. Caspase inhibitor Ac-DEVD-CHO partially reduced the growth inhibition effect of ART on SKM-1 cells. After treatment with ART for 24 hours, the apoptosis of SKM-1 cells was found, the cell cycle of SKM-1 was arrested in G0/G1 phase, ART could elevate the levels of calciumion and reactive orygen. ART could significantly down-regulate the protein expression levels of P-BAD and survivin in SKM-1 cells, and showed a highly negative correlation with ART dose (r = -0.909; r = -0.849). On the contrary, ART had no significant effect on expression levels of BAD and XIAP in SKM-1 cells, and after ART treatment, although BCL-2 protein expression was not significantly different when compared with control group, but the BCL-2/BAX ratio significantly decreased and highly negatively correlated with ART dose (r = -0.866).
CONCLUSIONThe ART significantly suppresses the cell proliferation, induces the apoptosis and promoted cell cycle arrest at G0/G1 phase in SKM-1 cells. The mechanisms of ART anti-MDS is associated with the increase of intracellular calciumion concentration and ROS levels. In addition, the pro-apoptotic activity of ART may be involved in the regulation of BCL-2 /BAX ratio and the expressions of P-bad and survivin.
Apoptosis ; drug effects ; Artemisinins ; pharmacology ; Calcium ; metabolism ; Cell Cycle ; drug effects ; Cell Cycle Checkpoints ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; drug effects ; Down-Regulation ; Humans ; Inhibitor of Apoptosis Proteins ; metabolism ; Oligopeptides ; pharmacology ; Reactive Oxygen Species ; metabolism
6.Effects of ghrelin on hippocampal DKK-1 expression and cognitive function in rats with diabetes mellitus.
Zhao-Xing SHEN ; Qian XIAO ; Yu-Xing ZHAO ; Ke-Xiang ZHAO
Journal of Southern Medical University 2016;36(4):500-505
OBJECTIVETo explore the effects of ghrelin on learning and memory abilities and expressions of DKK-1 and β-catenin in the hippocampus of diabetic rats.
METHODSSixty male SD rats were randomly assigned into 4 groups, namely the control group, diabetic group, ghrelin-treated diabetic group (DM1 group), and ghrelin- and D-lys3-GHRP-6 (a GHSR-1a receptor antagonist)-treated diabetic group (DM2 group). Diabetic rat models were established by a single intraperitoneal injection of streptozotocin (65 mg/kg). The learning and memory abilities of the rats were assessed with Morris water maze (MWM) test. The ultrastructure of the hippocampal CA1 area of the rats were observed with electron microscopy. Serum levels of DKK-1 were examined by ELISA, and the expressions of DKK-1 and β-catenin in the hippocampus were examined by quantitative real-time PCR and Western blotting.
RESULTSCompared with the control group, the diabetic rats exhibited significantly impaired learning and memory abilities (P<0.05), increased expression of DKK-1 and lowered β-catenin expression in the hippocampus (P<0.05), significant ultrastructural injuries and disordered arrangement of neurons with the nuclear pycnosis in the hippocampal CA1 area. Ghrelin treatment of the diabetic rats obviously improved their learning and memory abilities (P<0.05), reduced DKK-1 and increased β-catenin expressions (P<0.05), ameliorated ultrastructural damages in the hippocampal CA1 area and restored normal neuronal alignment with clear cell layers. Such effects of ghrelin were antagonized by treatment with D-lys3-GHRP-6 in the diabetic rats.
CONCLUSIONGhrelin can alleviate learning and memory dysfunction in diabetic rats possibly by down-regulating the expressions of DKK-1 and activating the WNT signaling pathways.
Animals ; CA1 Region, Hippocampal ; cytology ; metabolism ; pathology ; Cognition ; Diabetes Mellitus, Experimental ; metabolism ; Ghrelin ; pharmacology ; Intercellular Signaling Peptides and Proteins ; metabolism ; Learning ; Male ; Memory ; Neurons ; pathology ; Oligopeptides ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Streptozocin ; beta Catenin ; metabolism
7.A novel thermosensitive in-situ gel of gabexate mesilate for treatment of traumatic pancreatitis: An experimental study.
Han-jing GAO ; Qing SONG ; Fa-qin LV ; Shan WANG ; Yi-ru WANG ; Yu-kun LUO ; Xing-guo MEI ; Jie TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):707-711
Gabexate mesilate (GM) is a trypsin inhibitor, and mainly used for treatment of various acute pancreatitis, including traumatic pancreatitis (TP), edematous pancreatitis, and acute necrotizing pancreatitis. However, due to the characteristics of pharmacokinetics, the clinical application of GM still needs frequently intravenous administration to keep the blood drug concentration, which is difficult to manage. Specially, when the blood supply of pancreas is directly damaged, intravenous administration is difficult to exert the optimum therapy effect. To address it, a novel thermosensitive in-situ gel of gabexate mesilate (GMTI) was developed, and the optimum formulation of GMTI containing 20.6% (w/w) P-407 and 5.79% (w/w) P188 with different concentrations of GM was used as a gelling solvent. The effective drug concentration on trypsin inhibition was examined after treatment with different concentrations of GMTI in vitro, and GM served as a positive control. The security of GMTI was evaluated by hematoxylin-eosin (HE) staining, and its curative effect on grade II pancreas injury was also evaluated by testing amylase (AMS), C-reactive protein (CRP) and trypsinogen activation peptide (TAP), and pathological analysis of the pancreas. The trypsin activity was slightly inhibited at 1.0 and 5.0 mg/mL in GM group and GMTI group, respectively (P<0.05 vs. P-407), and completely inhibited at 10.0 and 20.0 mg/mL (P<0.01 vs. P-407). After local injection of 10 mg/mL GMTI to rat leg muscular tissue, muscle fiber texture was normal, and there were no obvious red blood cells and infiltration of inflammatory cells. Furthermore, the expression of AMS, CRP and TAP was significantly increased in TP group as compared with control group (P<0.01), and significantly decreased in GM group as compared with TP group (P<0.01), and also slightly inhibited after 1.0 and 5.0 mg/mL GMTI treatment as compared with TP group (P<0.05), and significantly inhibited after 10.0 and 20.0 mg/mL GMTI treatment as compared with TP group (P<0.01). HE staining results demonstrated that pancreas cells were uniformly distributed in control group, and they were loosely arranged, partially dissolved, with deeply stained nuclei in TP group. Expectedly, after gradient GMTI treatment, pancreas cells were gradually restored to tight distribution, with slightly stained nuclei. This preliminary study indicated that GMTI could effectively inhibit pancreatic enzymes, and alleviate the severity of trauma-induced pancreatitis, and had a potential drug developing and clinic application value.
Amylases
;
metabolism
;
Animals
;
C-Reactive Protein
;
metabolism
;
Delayed-Action Preparations
;
chemical synthesis
;
pharmacokinetics
;
pharmacology
;
Gabexate
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Gels
;
Male
;
Muscle, Skeletal
;
drug effects
;
enzymology
;
Oligopeptides
;
metabolism
;
Pancreas
;
drug effects
;
enzymology
;
pathology
;
Pancreatitis
;
drug therapy
;
enzymology
;
etiology
;
pathology
;
Poloxamer
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Serine Proteinase Inhibitors
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Temperature
;
Wounds, Penetrating
;
complications
;
drug therapy
;
enzymology
;
pathology
8.Expression and adjuvant effects of the fusion peptide TBP5.
Chen WANG ; Xiangling GUO ; Xiaokang LI ; Tingcai WU ; Deyuan LI ; Puyan CHEN
Chinese Journal of Biotechnology 2015;31(5):648-658
Thymopentin (TP5) and bursopentin (BP5) are both immunopotentiators. To explore whether the TP5-BP5 fusion peptide (TBP5) has adjuvant activity or not, we cloned the TBP5 gene and confirmed that the TBP5 gene in a recombinant prokaryotic expression plasmid was successfully expressed in Escherichia coli BL21. TBP5 significantly promoted the proliferation of thymic and splenic lymphocytes of mice. The potential adjuvant activity of the TBP5 was examined in mice by coinjecting TBP5 and H9N2 avian influenza virus (AIV) inactivated vaccine. HI antibody titers, HA antibodies and cytokines levels (IL-4 and IFN-γ) were determined. We found that TBP5 markedly elevated serum HI titers and HA antibody levels, induced the secretion of both IL-4 and IFN-γ cytokines. Furthermore, virus challenge experiments confirmed that TBP5 contributed to inhibition replication of the virus [H9N2 AIV (A/chicken/Jiangsu/NJ07/05)] from mouse lungs. Altogether, these findings suggest that TBP5 may be an effective adjuvant for avian vaccine and that this study provides a reference for further research on new vaccine adjuvants.
Adjuvants, Immunologic
;
pharmacology
;
Animals
;
Antibodies, Viral
;
blood
;
Cell Proliferation
;
drug effects
;
Influenza A Virus, H9N2 Subtype
;
drug effects
;
physiology
;
Influenza Vaccines
;
immunology
;
Interferon-gamma
;
immunology
;
Interleukin-4
;
immunology
;
Lymphocytes
;
drug effects
;
Mice
;
Oligopeptides
;
immunology
;
Orthomyxoviridae Infections
;
drug therapy
;
Recombinant Fusion Proteins
;
immunology
;
Spleen
;
cytology
;
Thymopentin
;
immunology
;
Thymus Gland
;
cytology
;
Vaccines, Inactivated
;
immunology
;
Virus Replication
9.Expression and antitumor activity of fusion protein RGD-TRAIL in Pichia pastoris.
Acta Pharmaceutica Sinica 2015;50(5):552-559
To compare the activity of RGD-TRAIL in different expression systems, RGD-TRAIL in both Escherichia coli (E.coli) and Pichia pastoris was constructed and expressed. In vitro activity of RGD-TRAIL from Pichia pastoris expression system was also analyzed. Genetic engineering techniques were used to construct recombinant plasmid pET30-rgd-trail and pHBM-rgd-trail. The recombinant protein RGD-TRAIL was purified with Ni ion affinity chromatography after induction. MTT assay, ELISA, scratch wound healing, transwell migration assay and Hoechst 33342 staining were performed to detect the effects of RGD-TRAIL on proliferation, binding activity, migration and apoptosis. The expression of apoptosis-associated proteins was detected by Western blotting. Recombinant protein RGD-TRAIL was successfully expressed in a form of inclusion body in E.coli, while expressed secretorily in Pichia pastoris. It possessed more potent cytotoxicity than RGD-TRAIL in E.coli by MTT assay. The RGD-TRAIL expressed by Pichia pastoris showed powerful binding affinity with cancer cells expressing α(v), DR4, DR5 and highly potent cytotoxicity through inducing apoptosis of cancer cells. Nuclear fragmentation was examined by Hoechst 33342 staining. Cleaved PARP and caspase-3 were also detected after incubation with RGD-TRAIL. Additionally, RGD-TRAIL inhibited migration significantly in A549 and HT1080 cells. The results demonstrate that Pichia pastoris expression system is more suitable for the recombinant protein RGD-TRAIL. Its binding affinity and antitumor activity might make RGD-TRAIL a promising candidate for cancer therapy.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Blotting, Western
;
Cell Line, Tumor
;
Chromatography, Affinity
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Humans
;
Oligopeptides
;
biosynthesis
;
pharmacology
;
Pichia
;
metabolism
;
Plasmids
;
Recombinant Fusion Proteins
;
biosynthesis
;
pharmacology
;
TNF-Related Apoptosis-Inducing Ligand
;
biosynthesis
;
pharmacology
10.Inhibition effect of N-acetyl-seryl-aspartyl-lysyl-proline on myofibroblast differentiation by regulating acetylated tubulin α in silicotic rat model.
Shifeng LI ; Xuemin GAO ; Dingjie XU ; Xiaojun WANG ; Yan LIU ; Lijuan ZHANG ; Haijing DENG ; Zhongqiu WEI ; Jingrui TIAN ; Hong XU ; Fang YANG ; E-mail: FANGYANG1955@163.COM.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(11):816-821
OBJECTIVETo explore the inhibition effect and mechanism of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP)on myofibroblast differentiation via regulating acetylated tubulin α (Ac-Tub α)in vivo and in vitro.
METHODSSilicotic model were made by SiO2 douched and divided into 6 groups as follows: control (4w, 8w)group, silicotic model (4w, 8w)group and post-or pre-treatment by Ac-SDKP group. Pulmonary fibroblasts were divided into 5 groups: (1) control; (2) Ang II; (3) Ang II+Ac-SDKP; (4) Ang II+Valsartan; (5) Ang II+TCS histone deacetylase (HDAC)6 20b. The localization of Ac-Tub α and α-smooth muscle actin (SMA) were observed by immunohistochemical (IHC) and immunofluorescence staining. The protein levels of Ac-Tub α, α-SMA, collagen type I (col I) and HDAC6 were measured by western blot.
RESULTSIn silicotic nodules and interstitial fibrosis area, positive expression of α-SMA, a classical marker of myofibroblast, was ob-served by IHC, accompanied with absence expression of Ac-Tub α. Furthermore, Ac-SDKP post-treatment could attenuate the levels of col I, α-SMA and HDAC6 to 48.39%, 52.63% and 70.18% compared with the silicotic 8w group respectively. And in Ac-SDKP pre-treatment group, compared with the silicotic 8w group, these protein levels were decreased to 32.26%, 64.91% and 54.39% respectively (P<0.05). The up-regulation of Ac-Tub α was found in Ac-SDKP post-and pre-treatment and increased to 3.00 and 2.90 folds compared with the silicotic 8w group. Compared with control group, the levels of α-SMA, HDAC6 and col I in Ang II group were up-regulated to 1.66, 3.56 and 4.00 folds accompanied with down-regulation of Ac-Tub by 44.44% (P<0.05). Pre-treatment with Valsartan, TCS HDAC6 20b or Ac-SDKP could inhibited all this changes induced by Ang II in vitro.
CONCLUSIONAc-SDKP can inhibit the myofibroblast differentiation and collagen deposition via sup-press HDAC6 and up-regulate the expression of Ac-Tub α in vivo and in vitro.
Actins ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Collagen Type I ; metabolism ; Disease Models, Animal ; Fibroblasts ; cytology ; Lung ; pathology ; Myofibroblasts ; cytology ; drug effects ; Oligopeptides ; pharmacology ; Rats ; Silicon Dioxide ; toxicity ; Silicosis ; drug therapy ; Tubulin ; metabolism

Result Analysis
Print
Save
E-mail