1.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
		                        		
		                        			 Objective:
		                        			To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM). 
		                        		
		                        			Materials and Methods:
		                        			We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared. 
		                        		
		                        			Results:
		                        			AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts. 
		                        		
		                        			Conclusion
		                        			AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided. 
		                        		
		                        		
		                        		
		                        	
2.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
		                        		
		                        			 Background/Aims:
		                        			Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification. 
		                        		
		                        			Methods:
		                        			374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification. 
		                        		
		                        			Results:
		                        			Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001). 
		                        		
		                        			Conclusions
		                        			We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population. 
		                        		
		                        		
		                        		
		                        	
3.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
		                        		
		                        			 Purpose:
		                        			Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma. 
		                        		
		                        			Materials and Methods:
		                        			We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance. 
		                        		
		                        			Results:
		                        			The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups. 
		                        		
		                        			Conclusion
		                        			Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity. 
		                        		
		                        		
		                        		
		                        	
4.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
		                        		
		                        			 Objective:
		                        			To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM). 
		                        		
		                        			Materials and Methods:
		                        			We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared. 
		                        		
		                        			Results:
		                        			AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts. 
		                        		
		                        			Conclusion
		                        			AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided. 
		                        		
		                        		
		                        		
		                        	
5.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
		                        		
		                        			 Background/Aims:
		                        			Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification. 
		                        		
		                        			Methods:
		                        			374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification. 
		                        		
		                        			Results:
		                        			Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001). 
		                        		
		                        			Conclusions
		                        			We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population. 
		                        		
		                        		
		                        		
		                        	
6.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
		                        		
		                        			 Purpose:
		                        			Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma. 
		                        		
		                        			Materials and Methods:
		                        			We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance. 
		                        		
		                        			Results:
		                        			The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups. 
		                        		
		                        			Conclusion
		                        			Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity. 
		                        		
		                        		
		                        		
		                        	
7.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
		                        		
		                        			 Objective:
		                        			To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM). 
		                        		
		                        			Materials and Methods:
		                        			We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared. 
		                        		
		                        			Results:
		                        			AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts. 
		                        		
		                        			Conclusion
		                        			AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided. 
		                        		
		                        		
		                        		
		                        	
8.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
		                        		
		                        			 Background/Aims:
		                        			Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification. 
		                        		
		                        			Methods:
		                        			374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification. 
		                        		
		                        			Results:
		                        			Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001). 
		                        		
		                        			Conclusions
		                        			We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population. 
		                        		
		                        		
		                        		
		                        	
9.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
		                        		
		                        			 Purpose:
		                        			Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma. 
		                        		
		                        			Materials and Methods:
		                        			We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance. 
		                        		
		                        			Results:
		                        			The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups. 
		                        		
		                        			Conclusion
		                        			Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity. 
		                        		
		                        		
		                        		
		                        	
10.Palliative Care and Hospice for Heart Failure Patients: Position Statement From the Korean Society of Heart Failure
Seung-Mok LEE ; Hae-Young LEE ; Shin Hye YOO ; Hyun-Jai CHO ; Jong-Chan YOUN ; Seong-Mi PARK ; Jin-Ok JEONG ; Min-Seok KIM ; Chi Young SHIM ; Jin Joo PARK ; Kye Hun KIM ; Eung Ju KIM ; Jeong Hoon YANG ; Jae Yeong CHO ; Sang-Ho JO ; Kyung-Kuk HWANG ; Ju-Hee LEE ; In-Cheol KIM ; Gi Beom KIM ; Jung Hyun CHOI ; Sung-Hee SHIN ; Wook-Jin CHUNG ; Seok-Min KANG ; Myeong Chan CHO ; Dae-Gyun PARK ; Byung-Su YOO
International Journal of Heart Failure 2025;7(1):32-46
		                        		
		                        			
		                        			 Heart failure (HF) is a major cause of mortality and morbidity in South Korea, imposing substantial physical, emotional, and financial burdens on patients and society. Despite the high burden of symptom and complex care needs of HF patients, palliative care and hospice services remain underutilized in South Korea due to cultural, institutional, and knowledge-related barriers. This position statement from the Korean Society of Heart Failure emphasizes the need for integrating palliative and hospice care into HF management to improve quality of life and support holistic care for patients and their families. By clarifying the role of palliative care in HF and proposing practical referral criteria, this position statement aims to bridge the gap between HF and palliative care services in South Korea, ultimately improving patient-centered outcomes and aligning treatment with the goals and values of HF patients. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail