1.Research progress of celastrol on the prevention and treatment of metabolic associated fatty liver disease.
Yun-Chao LIU ; Ying ZHANG ; Shu-Cun QIN ; Jun-Li XUE
Acta Physiologica Sinica 2023;75(5):682-690
Metabolic associated fatty liver disease (MAFLD) is a liver disease with hepatocyte steatosis caused by metabolic disorders, which is closely related to obesity, diabetes, metabolic dysfunction, and other factors. Its pathological process changes from simple steatosis, liver inflammation to non-alcoholic steatohepatitis (NASH), and then leads to liver fibrosis, cirrhosis, and liver cancer. At present, no specific therapeutics are available for treatment of MAFLD targeting its etiology. Celastrol is the main active component of the traditional Chinese medicine Celastrus orbiculatus Thunb. In recent years, it has been found that celastrol shows important medicinal value in regulating lipid metabolism, reducing fat and weight, and protecting liver, and then ameliorates MAFLD. This article reviews the related research progress of celastrol in the prevention and treatment of MAFLD, so as to provide a reference for the comprehensive development and utilization of celastrol.
Humans
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Liver/pathology*
;
Pentacyclic Triterpenes/metabolism*
;
Obesity
2.Association Between Trp64arg Polymorphism of the β3 adrenoreceptor Gene and Female Sex in Obese Turkish Children and Adolescents
Resul YILMAZ ; Omer ATEŞ ; Ali GÜL ; Tuba KASAP ; Samet ÖZER ; Emel ENSARI
Pediatric Gastroenterology, Hepatology & Nutrition 2019;22(5):460-469
PURPOSE: The β3-adrenergic receptor (ADRB3) is expressed in visceral adipose tissue and has been speculated to contribute to lipolysis, energy metabolism, and regulation of the metabolic rate. In this study, we aimed to investigate the association of polymorphism of the ADRB3 gene with the sex of children with obesity and related pathologies. METHODS: ADRB3 gene trp64arg genotyping was conducted in 441 children aged 6–18 years. Among these subjects, 264 were obese (103 boys; 161 girls) and 179 were of normal weight (81 boys; 98 girls). In the obese group, fasting lipids, glucose and insulin levels, and blood pressure were measured. Metabolic syndrome (MS) was defined according to the modified World Health Organization criteria adapted for children. RESULTS: The frequency of trp64arg genotype was similar in obese and normal weight children. In obese children, serum lipid, glucose, and insulin levels; homeostasis model assessment of insulin resistance (HOMA-IR) scores; and MS were not different between arg allele carriers (trp64arg) and noncarriers (trp64trp). In 264 obese children, genetic analysis results revealed that the arg allele carriers were significantly higher in girls than in boys (p=0.001). In the normal weight group, no statistically significant difference was found between genotypes of boys and girls (p=0.771). CONCLUSION: Trp64arg polymorphism of the ADRB3 gene was not associated with obesity and MS in Turkish children and adolescents. Although no relationships were observed between the genotypes and lipids, glucose/insulin levels, or HOMA-IR, the presence of trp64arg variant was frequent in obese girls, which can lead to weight gain as well as difficulty in losing weight in women.
Adolescent
;
Alleles
;
Blood Pressure
;
Child
;
Energy Metabolism
;
Fasting
;
Female
;
Genotype
;
Glucose
;
Homeostasis
;
Humans
;
Insulin
;
Insulin Resistance
;
Intra-Abdominal Fat
;
Lipolysis
;
Obesity
;
Pathology
;
Weight Gain
;
World Health Organization
3.Purinergic 2X7 Receptor is Involved in the Podocyte Damage of Obesity-Related Glomerulopathy via Activating Nucleotide-Binding and Oligomerization Domain-Like Receptor Protein 3 Inflammasome.
Xiao-Xia HOU ; Hong-Rui DONG ; Li-Jun SUN ; Min YANG ; Hong CHENG ; Yi-Pu CHEN
Chinese Medical Journal 2018;131(22):2713-2725
Background:
The nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome composed of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 is engaged in the inflammatory response of many kidney diseases and can be activated by purinergic 2X7 receptor (P2X7R). This study was conducted to explore whether P2X7R plays a pathogenic role in the podocyte damage of obesity-related glomerulopathy (ORG) and whether this role is mediated by the activation of NLRP3 inflammasome.
Methods:
A mouse model of ORG was established by high-fat diet feeding. The conditionally immortalized mouse podocytes were cultured with leptin or with leptin and P2X7R antagonist (KN-62 or A438079). The mRNA and protein expression of the P2X7R and NLRP3 inflammasome components including NLRP3, ASC, and caspase-1, as well as the podocyte-associated molecules including nephrin, podocin, and desmin in mouse renal cortex or cultured mouse podocytes were tested by real-time-polymerase chain reaction and Western blot analysis, respectively.
Results:
The significantly upregulated expression of P2X7R and NLRP3 inflammasome components and the NLRP3 inflammasome activation were observed in the renal cortex (in fact their location in podocytes was proved by confocal microscopy) of ORG mice in vivo, which were accompanied with the morphological changes of podocyte damage and the expression changes of podocyte-associated molecules. Similar changes in the expression of P2X7R and NLRP3 inflammasome components as well as in the expression of podocyte-associated molecules were also observed in the cultured podocyte studies treated by leptin in vitro, and all of the above changes were significantly attenuated by the P2X7R antagonist KN-62 or A438079.
Conclusions
P2X7R could trigger the activation of NLRP3 inflammasome, and the activated P2X7R/NLRP3 inflammasome in podocytes might be involved in the podocyte damage of ORG.
Animals
;
Blotting, Western
;
Body Weight
;
physiology
;
Inflammasomes
;
metabolism
;
Kidney Glomerulus
;
metabolism
;
pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
genetics
;
metabolism
;
Obesity
;
complications
;
Podocytes
;
metabolism
;
pathology
;
Receptors, Purinergic P2X7
;
genetics
;
metabolism
4.Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia.
Meng DONG ; Jun LIN ; Wonchung LIM ; Wanzhu JIN ; Hyuek Jong LEE
Frontiers of Medicine 2018;12(2):130-138
Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved insulin sensitivity. Furthermore, many genes involved in BATactivation and/or the recruitment of beige cells have been found, thereby providing new promising strategies for future clinical application of BAT activation to treat obesity and metabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT mass and its activity in the elderly are also discussed.
Adipose Tissue, Brown
;
metabolism
;
Aging
;
metabolism
;
Animals
;
Cachexia
;
metabolism
;
pathology
;
Disease Models, Animal
;
Energy Metabolism
;
Humans
;
Metabolic Syndrome
;
metabolism
;
Neoplasms
;
metabolism
;
pathology
;
Obesity
;
metabolism
;
Thermogenesis
5.Different adipose tissue depots and metabolic syndrome in human.
Acta Physiologica Sinica 2017;69(3):357-365
Obesity is characterized by abnormal and excessive adipose tissue accumulated in the body. Compared with peripheral obesity (the accumulation of subcutaneous adipose tissue), abdominal obesity (the accumulation of visceral adipose tissue) is associated with increased risk of the metabolic syndrome, such as diabetes, hypertension, atherosclerosis, and dyslipidemia. Adipose tissue is a highly heterogeneous endocrine organ. Adipose tissue depots differ significantly in anatomy, cell biology, glucose and lipid metabolism as well as in endocrine regulation. Visceral adipose tissue has a stronger metabolic activity and secrets a larger amount of free fat acids, adipocytokines, hormones and inflammatory factors, which flux into the liver directly via the hepatic portal vein. These characteristics indicate that visceral adiposity may lead to the metabolic syndrome and thus visceral adipose tissue might be the clinical target for the prevention and treatment of obesity.
Adipose Tissue
;
pathology
;
Humans
;
Intra-Abdominal Fat
;
pathology
;
Lipid Metabolism
;
Metabolic Syndrome
;
physiopathology
;
Obesity
;
physiopathology
;
Obesity, Abdominal
;
physiopathology
;
Subcutaneous Fat
;
pathology
6.Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity.
Xuejiao LIU ; Christopher CERVANTES ; Feng LIU
Protein & Cell 2017;8(6):446-454
Obesity, which underlies various metabolic and cardiovascular diseases, is a growing public health challenge for which established therapies are inadequate. Given the current obesity epidemic, there is a pressing need for more novel therapeutic strategies that will help adult individuals to manage their weight. One promising therapeutic intervention for reducing obesity is to enhance energy expenditure. Investigations into human brown fat and the recently discovered beige/brite fat have galvanized intense research efforts during the past decade because of their pivotal roles in energy dissipation. In this review, we summarize the evolution of human brown adipose tissue (hBAT) research and discuss new in vivo methodologies for evaluating energy expenditure in patients. We highlight the differences between human and mouse BAT by integrating and comparing their cellular morphology, function, and gene expression profiles. Although great advances in hBAT biology have been achieved in the past decade, more cellular models are needed to acquire a better understanding of adipose-specific processes and molecular mechanisms. Thus, this review also describes the development of a human brown fat cell line, which could provide promising mechanistic insights into hBAT function, signal transduction, and development. Finally, we focus on the therapeutic potential and current limitations of hBAT as an anti-glycemic, anti-lipidemic, and weight loss-inducing 'metabolic panacea'.
Adipose Tissue, Beige
;
metabolism
;
pathology
;
Adipose Tissue, Brown
;
metabolism
;
pathology
;
Animals
;
Cell Line
;
Energy Metabolism
;
Humans
;
Mice
;
Obesity
;
metabolism
;
pathology
;
therapy
7.Advances in the Relationship between Adipokines and β-cell Failure in Type 2 Diabetes Mellitus.
Acta Academiae Medicinae Sinicae 2016;38(5):601-606
β-cell failure coupled with insulin resistance plays a key role in the development of type 2 diabetes mellitus (T2DM). Changed adipokines in circulating level form a remarkable link between obesity and both β-cell failure and insulin resistance. Some adipokines have beneficial effects,whereas others have detrimental properties. The overall contribution of adipokines to β-cell failure mainly depends on the interactions among adipokines. This article reviews the role of individual adipokines such as leptin,adiponectin,and resistin in the function,proliferation,death,and failure of β-cells. Future studies focusing on the combined effects of adipokines on β-cells failure may provide new insights in the treatment of T2DM.
Adipokines
;
metabolism
;
Adiponectin
;
metabolism
;
Diabetes Mellitus, Type 2
;
physiopathology
;
Humans
;
Insulin Resistance
;
Insulin-Secreting Cells
;
pathology
;
Leptin
;
metabolism
;
Obesity
;
Resistin
;
metabolism
8.Brain Regulation of Energy Metabolism.
Endocrinology and Metabolism 2016;31(4):519-524
In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance.
Autonomic Nervous System
;
Brain Stem
;
Brain*
;
Energy Intake
;
Energy Metabolism*
;
Homeostasis
;
Hyperphagia
;
Hypothalamus
;
Ideal Body Weight
;
Metabolism
;
Neurons
;
Obesity
;
Pathology
9.Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease.
Sun Gi KIM ; Byung Kwon KIM ; Kyumin KIM ; Sungsoon FANG
Endocrinology and Metabolism 2016;31(4):500-504
Nonalcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver, occurring when fat is accumulated in the liver without alcohol consumption. NAFLD is the most common liver disorder in advanced countries. NAFLD is a spectrum of pathology involving hepatic steatosis with/without inflammation and nonalcoholic steatohepatitis with accumulation of hepatocyte damage and hepatic fibrosis. Recent studies have revealed that NAFLD results in the progression of cryptogenic cirrhosis that leads to hepatocarcinoma and cardiovascular diseases such as heart failure. The main causes of NAFLD have not been revealed yet, metabolic syndromes including obesity and insulin resistance are widely accepted for the critical risk factors for the pathogenesis of NAFLD. Nuclear receptors (NRs) are transcriptional factors that sense environmental or hormonal signals and regulate expression of genes, involved in cellular growth, development, and metabolism. Several NRs have been reported to regulate genes involved in energy and xenobiotic metabolism and inflammation. Among various NRs, farnesoid X receptor (FXR) is abundantly expressed in the liver and a key regulator to control various metabolic processes in the liver. Recent studies have shown that NAFLD is associated with inappropriate function of FXR. The impact of FXR transcriptional activity in NAFLD is likely to be potential therapeutic strategy, but still requires to elucidate underlying potent therapeutic mechanisms of FXR for the treatment of NAFLD. This article will focus the physiological roles of FXR and establish the correlation between FXR transcriptional activity and the pathogenesis of NAFLD.
Alcohol Drinking
;
Bile Acids and Salts
;
Bile*
;
Cardiovascular Diseases
;
Fatty Liver
;
Fibrosis
;
Heart Failure
;
Hepatocytes
;
Inflammation
;
Insulin Resistance
;
Liver
;
Metabolism
;
Non-alcoholic Fatty Liver Disease*
;
Obesity
;
Pathology
;
Receptors, Cytoplasmic and Nuclear
;
Risk Factors
10.IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.
Jin-Peng DU ; Geng WANG ; Chao-Jie HU ; Qing-Bo WANG ; Hui-Qing LI ; Wen-Fang XIA ; Xiao-Ming SHUAI ; Kai-Xiong TAO ; Guo-Bin WANG ; Ze-Feng XIA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):377-382
Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.
Animals
;
Body Weight
;
Cell Line
;
Gastrectomy
;
methods
;
Gene Expression
;
Hepatocytes
;
cytology
;
drug effects
;
metabolism
;
Interferon-gamma
;
biosynthesis
;
pharmacology
;
secretion
;
Intestine, Small
;
drug effects
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Lymph Nodes
;
drug effects
;
metabolism
;
Mesentery
;
drug effects
;
metabolism
;
Mice
;
Mice, Obese
;
Obesity
;
metabolism
;
pathology
;
surgery
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
genetics
;
metabolism
;
Weight Loss

Result Analysis
Print
Save
E-mail