1.Modified Linggui Zhugan Decoction () Ameliorates Glycolipid Metabolism and Inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α Signaling Pathways in Obese Type 2 Diabetic Rats.
Jia-Pan SUN ; Lin SHI ; Fang WANG ; Jian QIN ; Bin KE
Chinese journal of integrative medicine 2022;28(1):52-59
OBJECTIVE:
To investigate the protective effects of modified Linggui Zhugan Decoction (, MLZD), a traditional Chinese medicine formula, on obese type 2 diabetes mellitus (T2DM) rats.
METHODS:
Fifty Sprague-Dawley rats were randomly divided into 5 groups by a random number table, including normal, obese T2DM (ob-T2DM), MLZD low-dose [MLDZ-L, 4.625 g/(kg·d)], MLZD middle-dose [MLD-M, 9.25 g/(kg·d) ] and MLZD high-dose [MLD-H, 18.5 g/(kg·d)] groups, 10 rats in each group. After 4-week intervention, blood samples and liver, pancreas, muscle tissues were collected to assess the insulin resistance (IR), blood lipid, adipokines and inflammation cytokines. The alteration of phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or Akt)/the mammalian target of rapamycin (mTOR)-ribosome protein subunit 6 kinase 1 (S6K1 )/AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α) pathways were also studied.
RESULTS:
MLZD dose-dependently reduced fasting blood glucose, fasting insulin, homeostasis model of assessment for IR index and increased insulin sensitive index compared with ob-T2DM rats (P<0.05). Similarly, total cholesterol, triglyceride, low-density lipoprotein cholesterol and free fatty acids were also decreased compared with ob-T2DM rats after 4-week treatment (P<0.05 or P<0.01). Improvements in adipokines and inflammatory cytokines were observed with a raised level of adiponectin and a reduced level of leptin, resistin, tumor necrosis factor-α and interleukin-6 (P<0.05 or P<0.01). MLZD regulated the PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways and restored the tissue structure of liver and pancreas (P<0.05 or P<0.01).
CONCLUSIONS
MLZD ameliorated glycolipid metabolism and inflammation, which may be attributed to the regulation of PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways.
AMP-Activated Protein Kinases/metabolism*
;
Animals
;
Diabetes Mellitus, Experimental
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glycolipids
;
Inflammation
;
Obesity/drug therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
2.Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity.
Qiang LI ; Qimeng YANG ; Jing HAN ; Xiaohan LIU ; Junjie FU ; Jian YIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):863-872
Peptide dual agonists toward both glucagon-like peptide 1 receptor (GLP-1R) and glucagon receptor (GCGR) are emerging as novel therapeutics for the treatment of type 2 diabetes mellitus (T2DM) patients with obesity. Our previous work identified a Xenopus GLP-1-based dual GLP-1R/GCGR agonist termed xGLP/GCG-13, which showed decent hypoglycemic and body weight lowering activity. However, the clinical utility of xGLP/GCG-13 is limited due to its short in vivo half-life. Inspired by the fact that O-GlcNAcylation of intracellular proteins leads to increased stability of secreted proteins, we rationally designed a panel of O-GlcNAcylated xGLP/GCG-13 analogs as potential long-acting GLP-1R/ GCGR dual agonists. One of the synthesized glycopeptides 1f was found to be equipotent to xGLP/GCG-13 in cell-based receptor activation assays. As expected, O-GlcNAcylation effectively improved the stability of xGLP/GCG-13 in vivo. Importantly, chronic administration of 1f potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, and normalized lipid metabolism and adiposity in both db/db and diet induced obesity (DIO) mice models. These results supported the hypothesis that glycosylation is a useful strategy for improving the in vivo stability of GLP-1-based peptides and promoted the development of dual GLP-1R/GCGR agonists as antidiabetic/antiobesity drugs.
Mice
;
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Receptors, Glucagon/therapeutic use*
;
Xenopus laevis/metabolism*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glycopeptides/therapeutic use*
;
Obesity/drug therapy*
;
Hypoglycemic Agents/pharmacology*
;
Peptides/pharmacology*
3.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
4.Salvianolic acids improve liver lipid metabolism in ovariectomized rats via blocking STAT-3/SREBP1 signaling.
Juan CHEN ; Jia YUE ; Jiao LIU ; Yun LIU ; Kai-Lin JIAO ; Meng-Ying TENG ; Chun-Yan HU ; Jing ZHEN ; Mao-Xuan WU ; Ming ZHOU ; Zhong LI ; Yuan LI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):838-845
Postmenopausal women, who have reduced circulating estrogen levels, are more prone to develop obesity and related metabolic diseases than premenopausal women. The absence of safe and effective treatments for postmenopausal obesity has changed the focus to natural products as alternative remedies. Total salvianolic acids (TSA) are the major water-soluble ingredients of Danshen. Salvianolic acid (SA) is the major constituent of the TSA. Salvianolic acids, including TSA and SA, are widely used in traditional Chinese medicine. In the present study, ovariectomized rats and LO2 cells were used to study the effects of salvianolic acids on body weight gain and hepatic steatosis. Salvianolic acids reduced ovariectomy (OVX)-induced body weight gain, attenuated the expressions of hepatic lipogenic genes, such as sterol regulatory element binding protein (SREBP)1, fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD)1, and decreased the liver triglyceride (TG) and total cholesterol (TC). For the molecular mechanisms, OVX and high glucose-induced phosphorylation of signal transducer and activator of transcription (STAT)-3 was inhibited by salvianolic acids treatment. In LO2 cells, inhibition of STAT-3 by siRNA attenuated the increased expression of SREBP1 and TG induced by high glucose. Salvianolic acids reduced the upregulation of SREBP1 and TG induced by high glucose in LO2 cells. In conclusion, these findings illustrated that salvianolic acids markedly alleviated the lipid metabolism disorders and protected against the postmenopausal obesity. The underlying mechanism was probably associated with the regulation of STAT-3 signaling.
Alkenes
;
administration & dosage
;
Animals
;
Drugs, Chinese Herbal
;
administration & dosage
;
Female
;
Humans
;
Lipid Metabolism
;
drug effects
;
Liver
;
drug effects
;
metabolism
;
Obesity
;
drug therapy
;
genetics
;
metabolism
;
Ovariectomy
;
Polyphenols
;
administration & dosage
;
Postmenopause
;
drug effects
;
genetics
;
metabolism
;
Rats
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Salvia miltiorrhiza
;
chemistry
;
Signal Transduction
;
drug effects
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
5.Effect of lipoxin A4 on the expression of Toll-like receptor 4 and TNF receptor-associated factor 6 in the liver of obese rats with sepsis.
Wei-Wei JIANG ; Li-Li GAO ; Ming WU ; Tong ZHAO ; Dong-Ling SHEN
Chinese Journal of Contemporary Pediatrics 2018;20(7):578-584
OBJECTIVETo study the protective effect of lipoxin A4 (LXA4) against sepsis induced by lipopolysaccharide (LPS) in rats with obesity and its effect on the expression of Toll-like receptor 4 (TLR4) and TNF receptor-associated factor 6 (TRAF6) in the liver.
METHODSA total of 60 male Sprague-Dawley rats aged three weeks were randomly divided into a normal group and an obesity group, with 30 rats in each group. A rat model of obesity was established by high-fat diet. Each of the two groups was further randomly divided into control group, sepsis group, and LXA4 group, and 8 rats were selected from each group. The rats in the control, sepsis, and LXA4 groups were treated with intraperitoneal injection of normal saline, LPS, and LXA4+LPS respectively. Twelve hours later, blood samples were collected from the heart and liver tissue samples were also collected. ELISA was used to measure the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Western blot was used to measure the protein expression of TLR4 and TRAF6 in liver tissue. Quantitative real-time PCR was used to measure the mRNA expression of TLR4 and TRAF6.
RESULTSAfter being fed with high-fat diet for 6 weeks, the obesity group had significantly higher average weight and Lee's index than the normal group (P<0.05). Compared with the normal group, the obesity group had significant increases in the serum levels of IL-6 and TNF-α (P<0.05). In the normal group or the obesity group, the sepsis subgroup had significant increases in the serum levels of IL-6 and TNF-α compared with the control subgroup (P<0.05), while the LXA4 subgroup had significant reductions in the two indices compared with the sepsis subgroup (P<0.05). Compared with the normal group, the obesity group had significant increases in the protein and mRNA expression of TLR4 and TRAF6 (P<0.05). In the normal group or the obesity group, the sepsis subgroup had significant increases in the protein and mRNA expression of TLR4 and TRAF6 compared with the control subgroup (P<0.05). Compared with the sepsis subgroup, the LXA4 subgroup had significant reductions in the protein and mRNA expression of TLR4 and TRAF6 (P<0.05).
CONCLUSIONSLXA4 can reduce the serum levels of IL-6 and TNF-α and alleviate inflammatory response. LXA4 can inhibit the expression of TLR4 and TRAF6 in the liver of septic rats, possibly by inhibiting the TLR4 signaling pathway.
Animals ; Humans ; Interleukin-6 ; genetics ; metabolism ; Lipoxins ; administration & dosage ; Liver ; drug effects ; metabolism ; Male ; Obesity ; complications ; drug therapy ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Sepsis ; complications ; drug therapy ; genetics ; metabolism ; Signal Transduction ; drug effects ; TNF Receptor-Associated Factor 6 ; genetics ; metabolism ; Toll-Like Receptor 4 ; genetics ; metabolism ; Tumor Necrosis Factor-alpha ; genetics ; metabolism
6.Irbesartan ameliorates cardiac inflammation in type 2 diabetic db/db mice.
Xian-Lang YE ; Wei-Chang HUANG ; Yan-Tao ZHENG ; Ying LIANG ; Wang-Qiu GONG ; Chong-Miao YANG ; Bin LIU
Journal of Southern Medical University 2016;37(4):505-511
OBJECTIVETo investigate the protective effects of irbesartan against cardiac inflammation associated with diabetes and obesity in the db/db mouse model of type 2 diabetes and explore the underlying mechanisms.
METHODSTwenty- four 10-week-old diabetic db/db mice were equally randomized into irbesartan treatment (50 mg/kg per day) group and model group, using 12 nondiabetic littermates (db/+) as the controls, The mice were treated with irbesartan or saline vehicle for 16 consecutive weeks, after which the heart pathology was observed and the heart weight, body weight, and serum levels of fasting blood glucose (FBG), total cholesterol(TC), and triglycerides(TG) were measured. The expression of nuclear factor-kappaB (NF-κB) p65 in the myocardium was assessed with immunohistochemistry, the protein levels of P-IκBα ,IκBα and β-actin were analyzed with Western blotting, and the pro-inflammatory cytokines IL-6 and TNF-α mRNA were detected using quantitative real-time PCR (qPCR).
RESULTSCompared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia and hyperlipidemia (P<0.01). Histopathological examination of the heart tissue revealed inflammatory cell infiltration, increased myocardial interstitium and disorders of myocardial fiber arrangement. The diabetic mice showed increased P-IαBα and decreased IκBα protein levels, enhanced activity and expression of NF-κB in the hearts, and increased mRNA expression of IL-6 and TNF-α in the myocardium. These abnormalities were all associated with increased inflammatory response. Treatment with irbesartan improved the heart architecture and attenuated high glucose-induced inflammation in the diabetic mice.
CONCLUSIONTreatment with irbesartan attenuates cardiac inflammation in type 2 diabetic db/db mice, and this effect was probably associated with the suppression of cardiac angiotensin II and NF-κB signaling pathway.
Actins ; metabolism ; Angiotensin II ; metabolism ; Animals ; Biphenyl Compounds ; pharmacology ; Cardiovascular Diseases ; drug therapy ; Diabetes Mellitus, Experimental ; complications ; Diabetes Mellitus, Type 2 ; complications ; Inflammation ; drug therapy ; Interleukin-6 ; metabolism ; Mice ; Obesity ; complications ; Random Allocation ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; Tetrazoles ; pharmacology ; Transcription Factor RelA ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
7.Effects of Angelica dahurica on obesity and fatty liver in mice.
Xi LU ; Zhi-Yi YUAN ; Xiao-Jin YAN ; Fan LEI ; Jing-Fei JIANG ; Xuan YU ; Xiu-Wei YANG ; Dong-Ming XING ; Li-Jun DU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(9):641-652
Angelica dahurica (A. dahurica) is a traditional Chinese medicinal plant being used in clinical practice. The present study demonstrated that A. dahurica could reduce white-fat weight in high-fat-diet hyperlipidemic mice, decrease total cholesterol and triglyceride concentrations in the livers of both high-fat-diet and Triton WR1339 induced hyperlipidemic mice, and enhance the total hepatic lipase activities of them. These findings were further supported by the results derived from the experiments with HepG2 cells in vitro. In addition, the proteins related to lipids metabolism were investigated using LC-MS/MS, indicating that genes of lipid metabolism and lipid transport were regulated by A. dhurica. The results from LC-MS/MS were further conformed by Western blot and real time PCR assays. A. dahurica could down-regulate the expression of catalase (CAT) and sterol carrier protein2 (SCP2) and up-regulate the expression of lipid metabolism related genes-lipase member C (LIPC) and peroxisome proliferator-activated receptor gamma (PPARγ). In the Triton WR1339 mouse liver and HepG2 cells in vitro, A. dahurica was able to increase the expression of LIPC and PPARγ, confirming the results from in vivo experiments. Imperatorin showed the same activity as A. dahurica, suggesting it was one of the major active ingredients of the herb. In conclusion, our work represented a first investigation demonstrating that A. dahurica was able to regulate lipid metabolism and could be developed as a novel approach to fighting against fatty liver and obesity.
Angelica
;
chemistry
;
Animals
;
Carrier Proteins
;
genetics
;
metabolism
;
Cholesterol
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Fatty Liver
;
drug therapy
;
genetics
;
metabolism
;
Humans
;
Liver
;
drug effects
;
metabolism
;
Male
;
Mice
;
Mice, Inbred ICR
;
Obesity
;
drug therapy
;
genetics
;
metabolism
;
PPAR gamma
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
8.Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.
Ying-Ying CHEN ; Yan YAN ; Zheng ZHAO ; Mei-Jing SHI ; Yu-Bin ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(6):449-456
The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05), including blood glucose (Glu), total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C) and insulin. Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT. Moreover, BF also reduced the expression of inflammatory cytokines in WAT, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.
Adipose Tissue, Brown
;
drug effects
;
immunology
;
Adipose Tissue, White
;
drug effects
;
immunology
;
Animals
;
Cytokines
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Energy Metabolism
;
drug effects
;
Female
;
Humans
;
Interleukin-6
;
genetics
;
immunology
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
immunology
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
genetics
;
immunology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Uncoupling Protein 1
;
genetics
;
metabolism
9.Effect of MDG-1, a polysaccharide from Ophiopogon japonicas, on diversity of lactobacillus in diet-induced obese mice.
Lin-lin SHI ; Yuan WANG ; Yi FENG
China Journal of Chinese Materia Medica 2015;40(4):716-721
For understanding the effect of MDG-1, a water-soluble β-D-fructan polysaccharide from Ophiopogon japonicas, on intestinal microecological balance, especially on the changes of lactobacillus, sixty 8-week-old male C57BL/6J mice were given a high-fat diet for six weeks and were also gavaged with saline once a day simultaneously. Then the mice which is below 30 grams or dropped more than 10% through lavage were eliminated and the rest were randomly divided into four groups: diet-induced obese (DIO) model group (n = 12, gavaged with saline), low-dose MDG-1 group (n = 12, gavaged with MDG-1, 75 mg · kg(-1)) , medial-dose MDG- 1 group (n = 12, gavaged with 150 mg · kg(-1)), and high-dose MDG-1 group (n = 12, gavaged with 300 mg · kg(-1)) according to the weight and blood glucose; the model group and MDG-1 group were placed on a high-fat diet while the normal control group (n = 12, gavaged with saline) were kept on a low-fat diet through the experiment. After 12-weeks of treatment, feces samples were collected and cultured for intestinal microecological balance analysis. Then the intestinal probiotics were cultured through traditional methods combined with modified gradient gel electrophoresis (DGGE) method. The changes of lactobacillus in each treatment group were also detected by a statistical analysis of the total number of the intestinal flora. We have established the phylogenetic tree by 16S rDNA sequencing and use some molecular identification methods such as PCR-DGGE to analyse the changes of the dominant bacteria floras, and also get the pure culture. In conclusion, different concentrations of MDG-1 can increase the number of the intestinal probiotics, especially Taiwan lactobacillus and Lactobacillus murinus, and improve their diversity and promote proliferation in a dose-dependent way.
Animals
;
Biodiversity
;
Diet, High-Fat
;
adverse effects
;
Dietary Carbohydrates
;
administration & dosage
;
analysis
;
Humans
;
Intestines
;
drug effects
;
metabolism
;
microbiology
;
Lactobacillus
;
classification
;
drug effects
;
genetics
;
growth & development
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Obese
;
Molecular Structure
;
Obesity
;
drug therapy
;
metabolism
;
microbiology
;
Ophiopogon
;
chemistry
;
Phylogeny
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Polysaccharides
;
administration & dosage
;
chemistry
10.Effects of Maternal Linseed Oil Supplementation on Metabolic Parameters in Cafeteria Diet-induced Obese Rats.
Nawel BENAISSA ; Hafida MERZOUK ; Sid Ahmed MERZOUK ; Michel NARCE
Biomedical and Environmental Sciences 2015;28(4):298-302
Because linseed oil may influence maternal and fetal metabolisms, we investigated its role in the modulation of lipid metabolism in cafeteria diet-induced obese rats and their offspring. Female Wistar rats were fed control or cafeteria food, which were either supplemented or not supplemented with linseed oil (5%) for 1 month before and during gestation. At parturition, serum and tissue lipids and enzyme activities were analyzed. Cafeteria diet induced adverse metabolic alterations in both mothers and offspring. Linseed oil improved metabolic status. In conclusion, linseed oil displayed health benefits by modulating tissue enzyme activities in both obese mothers and their newborns.
Animal Feed
;
analysis
;
Animals
;
Diet
;
adverse effects
;
Dietary Supplements
;
analysis
;
Female
;
Linseed Oil
;
administration & dosage
;
metabolism
;
Lipid Metabolism
;
drug effects
;
Maternal Nutritional Physiological Phenomena
;
drug effects
;
Obesity
;
drug therapy
;
etiology
;
metabolism
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
drug therapy
;
etiology
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Wistar

Result Analysis
Print
Save
E-mail