1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
3.Research progress in vaccines of SARS-CoV-2.
Xinbin GE ; Qigan QU ; Zeguang WANG ; Shungeng ZHANG ; Yan CHI ; Chunhui SHAN ; Ruihan LIU ; Qing ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):946-951
Since the outbreak of corona virus disease 2019 (COVID-19), viral strains have mutated and evolved. Vaccine research is the most direct and effective way to control COVID-19. According to different production mechanisms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines included inactivated virus vaccine, live attenuated vaccine, mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like particle vaccine and protein subunit vaccine. Among them, viral protein subunit vaccine has a wide application prospect due to its high safety and effectiveness. Viral nucleocapsid protein has high immunogenicity and low variability which could be a new direction for vaccine production. We summarized the current development of vaccine research by reviewing the current progress, vaccine safety and vaccine immune efficiency. It is hoped that the proposed possible development strategies could provide a reference for epidemic prevention work in future.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/prevention & control*
;
Protein Subunits
;
Vaccines, DNA
;
Nucleocapsid Proteins
4.Establishment and preliminary application of quantitative real-time PCR assay for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA.
Xiao Juan ZHU ; Yin CHEN ; Bin WU ; Yi Yue GE ; Tao WU ; Qiao QIAO ; Kang Chen ZHAO ; Lun Biao CUI
Chinese Journal of Preventive Medicine 2023;57(2):268-272
Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/diagnosis*
;
Subgenomic RNA
;
Real-Time Polymerase Chain Reaction/methods*
;
RNA, Viral/genetics*
;
Sensitivity and Specificity
;
Nucleocapsid/chemistry*
;
COVID-19 Testing
5.The nucleocapsid protein of rice stripe virus in cell nuclei of vector insect regulates viral replication.
Wan ZHAO ; Junjie ZHU ; Hong LU ; Jiaming ZHU ; Fei JIANG ; Wei WANG ; Lan LUO ; Le KANG ; Feng CUI
Protein & Cell 2022;13(5):360-378
Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.
Animals
;
Cell Nucleus
;
Hemiptera/metabolism*
;
Insect Vectors/genetics*
;
Insecta
;
Nucleocapsid Proteins/metabolism*
;
Oryza
;
Plant Diseases
;
Tenuivirus/metabolism*
;
Virus Replication
6.Fecal Nucleic Acid Test as a Complementary Standard for Cured COVID-19 Patients.
Mei HAN ; Jing Bo ZOU ; Huan LI ; Xiao Yu WEI ; Song YANG ; Hui Zheng ZHANG ; Peng Sen WANG ; Qian QIU ; Le Le WANG ; Yao Kai CHEN ; Pin Liang PAN
Biomedical and Environmental Sciences 2020;33(12):935-939
Adolescent
;
Adult
;
Aged
;
COVID-19/virology*
;
COVID-19 Nucleic Acid Testing/methods*
;
Child
;
Coronavirus Nucleocapsid Proteins/genetics*
;
Feces/virology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Phosphoproteins/genetics*
;
RNA, Viral/genetics*
;
SARS-CoV-2/isolation & purification*
;
Young Adult
7.Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation.
Ying SHAN ; Zi-Qi LIU ; Guo-Wei LI ; Cong CHEN ; Hao LUO ; Ya-Jie LIU ; Xun-Hui ZHUO ; Xing-Fen SHI ; Wei-Huan FANG ; Xiao-Liang LI
Journal of Zhejiang University. Science. B 2018;19(7):570-580
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Active Transport, Cell Nucleus
;
Animals
;
Coronavirus Infections
;
immunology
;
veterinary
;
virology
;
Genes, Viral
;
Host-Pathogen Interactions
;
immunology
;
Interferons
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
Interleukins
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
NF-kappa B
;
metabolism
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
physiology
;
Porcine epidemic diarrhea virus
;
genetics
;
pathogenicity
;
physiology
;
Promoter Regions, Genetic
;
Swine
;
Swine Diseases
;
immunology
;
virology
8.A recombinant rabies virus (ERAGS) for use in a bait vaccine for swine.
Dong Kun YANG ; Ha Hyun KIM ; Sung Suk CHOI ; Seong Heon LEE ; In Soo CHO
Clinical and Experimental Vaccine Research 2016;5(2):169-174
PURPOSE: Rabies viruses (RABV) circulating worldwide in various carnivores occasionally cause fatal encephalitis in swine. In this study, the safety and immunogenicity of a recombinant rabies virus, the ERAGS strain constructed with a reverse genetics system, was evaluated in domestic pigs. MATERIALS AND METHODS: Growing pigs were administered 1 mL (108.0 FAID50/mL) of the ERAGS strain via intramuscular (IM) or oral routes and were observed for 4 weeks' post-inoculation. Three sows were also inoculated with 1 mL of the ERAGS strain via the IM route. The safety and immunogenicity in swine were evaluated using daily observation and a virus-neutralizing assay (VNA). Fluorescent antibody tests (FAT) for the RABV antigen and reverse transcriptase-polymerase chain reaction (RT-PCR) assays for the detection of the nucleocapsid (N) gene of RABV were conducted with brain tissues from the sows after necropsy. RESULTS: The growing pigs and sows administered the ERAGS strain did not exhibit any clinical sign of rabies during the test period test and did develop VNA titers. The growing pigs inoculated with the ERAGS strain via the IM route showed higher VNA titers than did those receiving oral administration. FAT and RT-PCR assays were unable to detect RABV in several tissues, including brain samples from the sows. CONCLUSION: Our results suggest that the ERAGS strain was safe in growing pigs and sows and induced moderate VNA titers in pigs.
Administration, Oral
;
Brain
;
Encephalitis
;
Nucleocapsid
;
Rabies virus*
;
Rabies*
;
Reverse Genetics
;
Sus scrofa
;
Swine*
;
Vaccines
9.In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli.
Ruchao PENG ; Tengfei ZHU ; Babayemi Olawale OLADEJO ; Abednego Moki MUSYOKI ; Yingzi CUI ; Yi SHI ; Peiyi WANG ; George Fu GAO
Protein & Cell 2016;7(12):888-898
Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.
Ebolavirus
;
chemistry
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Nucleocapsid
;
chemistry
;
genetics
;
metabolism
;
RNA, Viral
;
chemistry
;
genetics
;
metabolism
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Virus Assembly
10.Study on serological cross-reactivity of six pathogenic phleboviruses.
Wei WU ; Shuo ZHANG ; Quan-Fu ZHANG ; Chuan LI ; Mi-Fang LIANG ; De-Xin LI
Chinese Journal of Virology 2014;30(4):387-390
This article aimed to study the antigenicity of nucleocapsid proteins (NPs) in six pathogenic phleboviruses and to provide theoretical evidence for the development of serological diagnostic reagents. NPs of six pathogenic phleboviruses were expressed and purified using a prokaryotic expression system and rabbits were immunized with individual recombinant NPs. Cross-reactions among NPs and rabbit sera were determined by both indirect ELISA and Western blotting analyses, and the sera titer was determined by indirect ELISA. Furthermore, sera from SFTS patients were also detected by each recombinant NP as a coating antigen using indirect ELISA. The cross-reactions and the sera titer were subsequently determined. Both the concentration and purity of recombinant NPs of six pathogenic phleboviruses met the standards for immunization and detection. The results of indirect ELISA and Western blotting showed that each anti-phlebovirus NP rabbit immune serum had potential serological cross-reactivity with the other five virus NP antigens. Furthermore, the sera from SFTS patients also had cross-reactivity with the other five NP antigens to a certain extent. Our preliminary study evaluated the antigenicity and immune reactivity of six pathogenic phleboviruses NPs and laid the foundation for the development of diagnostic reagents.
Animals
;
Antibodies, Viral
;
immunology
;
Antigens, Viral
;
genetics
;
immunology
;
Cross Reactions
;
Humans
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
Phlebotomus Fever
;
diagnosis
;
immunology
;
virology
;
Phlebovirus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Rabbits

Result Analysis
Print
Save
E-mail