1.Genomic variant surveillance of SARS-CoV-2 positive specimens using a direct PCR product sequencing surveillance (DPPSS) method.
Nicole Ann L. TUBERON ; Francisco M. HERALDE III ; Catherine C. REPORTOSO ; Arturo L. GAITANO III ; Wilmar Jun O. ELOPRE ; Kim Claudette J. FERNANDEZ
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND AND OBJECTIVE
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19 has significantly challenged the public health landscape in late 2019. After almost 3 years of the first ever SARS-CoV-2 case, the World Health Organization (WHO) declared the end of this global health emergency in May 2023. Although, despite the subsequent drop of COVID-19 cases, the SARS-CoV-2 infection still exhibited multiple waves of infection, primarily attributed to the appearance of new variants. Five of these variants have been classified as Variants of Concern (VOC): Alpha, Beta, Gamma, Delta, and the most recent, Omicron. Therefore, the development of methods for the timely and accurate detection of viral variants remains fundamental, ensuring an ongoing and effective response to the disease. This study aims to evaluate the feasibility of the application of an in-house approach in genomic surveillance for the detection of SARS-CoV-2 variants using in silico designed primers.
METHODSThe primers used for the study were particularly designed based on conserved regions of certain genes in the virus, targeting distinct mutations found in known variants of SARS-CoV-2. Viral RNA extracts from nasopharyngeal samples (n=14) were subjected to quantitative and qualitative tests (Nanodrop and AGE). Selected samples were then analyzed by RT-PCR and amplicons were submitted for sequencing. Sequence alignment analysis was carried out to identify the prevailing COVID-19 variant present in the sample population.
RESULTSThe study findings demonstrated that the in-house method was able to successfully amplify conserved sequences (spike, envelope, membrane, ORF1ab) and enabled identification of the circulating SARS-CoV-2 variant among the samples. Majority of the samples were identified as Omicron variant. Three out of four designed primers effectively bound into the conserved sequence of target genes present in the sample, revealing the specific SARSCoV-2 variant. The detected mutations characterized for Omicron found in the identified lineages included K417N, S477N, and P681H which were also identified as mutations of interest. Furthermore, identification of the B.1.448 lineage which was not classified in any known variant also provided the potential of the developed in-house method in detecting unknown variants of COVID-19.
CONCLUSIONAmong the five VOCs, Omicron is the most prevalent and dominant variant. The in-house direct PCR product sequencing surveillance (DPPSS) method provided an alternative platform for SAR-CoV-2 variant analysis which is accessible and affordable than the conventional diagnostic surveillance methods and the whole genome sequencing. Further evaluation and improvements on the oligonucleotide primers may offer significant contribution to the development of a specific and direct PCRbased detection of new emerging COVID-19 variants.
Sars-cov-2 ; Polymerase Chain Reaction ; Dna Primers ; Oligonucleotide Primers
2.Identification of nontuberculous mycobacteria in patients with multidrug-resistant tuberculosis in Quezon City, Philippines, using multiplex PCR.
Michelle M. CABANATAN ; Alice Alma C. BUNGAY ; Sharon Yvette Angelina M. VILLANUEVA ; Marohren C. TOBIAS-ALTURA ; Dario D. DEFENSOR ; Maria Margarita M. LOTA
Acta Medica Philippina 2025;59(4):103-112
BACKGROUND AND OBJECTIVE
Nontuberculous mycobacteria (NTM) lung disease appears like tuberculosis infection but is resistant to primary anti-tuberculosis drugs. Hence, patients whose sputum sample tests positive for acid-fast bacilli (AFB) and bacterial culture for several times should be assessed for colonization or infection with NTM in a damaged lung secondary to TB. In such cases, though drug-resistant TB may be adequately treated, treatment may need to be directed towards the NTM as well. In NTM therapy, the duration and choice of treatment agent is based upon the specific organism and disease extent. This study used one-step multiplex PCR (mPCR) assay for rapid differentiation of solid cultures in Ogawa medium as Mycobacterium tuberculosis (MTB) and/or NTM.
METHODSA total of 80 stocked isolates obtained from the Lung Center of the Philippines from January to December 2018 were screened for NTM in terms of growth in Ogawa medium, acid fastness, and MPT64 TB antigen test result. These were from sputum specimens of multidrug-resistant tuberculosis (MDR-TB) patients. DNA was extracted from cultures (n=55) grown in Ogawa medium and one-step mPCR was performed to identify NTM to the species level.
RESULTSOut of 80 samples screened, a total of 55 isolates were identified as NTM. One-step mPCR identified 12.73% (7/55) as M. abscessus, 34.55% (19/55) as M. massiliense, 1.82% (1/55) as M. kansasii, and 50.91% (28/55) were identified only up to genus Mycobacteria spp. Neither M. avium complex nor M. intracellulare was identified among the samples tested.
CONCLUSIONOne-step mPCR was able to identify isolates as MTB or NTM coinciding with the initial screening using MPT64 TB antigen test. Multiplex PCR has given a more specific identificati on to the species level. The use of mPCR in identifying MTB and clinically significant NTM’s is suitable for the adequate treatment of mycobacterial infection.
Human ; Bacteria ; Multiplex Pcr ; Multiplex Polymerase Chain Reaction ; Mycobacteria ; Mycobacterium ; Tuberculosis, Multidrug-resistant
4.Method validation study for SARS-CoV-2 viral RNA detection in cervical, rectal, amniotic fluid, placental, umbilical cord blood, and breastmilk specimens in a cohort of unvaccinated women in Manila, Philippines
Erlidia F. Llamas-Clark ; Mayan U. Lumandas ; Daniel C. Villarico ; Amalea Dulcene D. Nicolasora ; Maria Stephanie Fay S. Cagayan ; Emmanuel S. Baja ; Maria Esterlita T. Villanueva-Uy ; Paulyn Jean B. Rosell-Ubial ; Francisco M. Heralde III
Acta Medica Philippina 2024;58(15):32-38
OBJECTIVES
To validate a method in detecting SARS-CoV-2 via RT-qPCR in pregnant and non-pregnant samples other than nasopharyngeal swabs and/or oropharyngeal swabs such as cervical, rectal, amniotic fluid, placental, umbilical cord blood, and breastmilk.
METHODSWe performed a validation experiment using MGI easy extraction kits and BGI PCR kits on non-conventional specimens, including cervical, rectal, amniotic fluid, placental, umbilical cord blood, and breastmilk to detect and confirm the presence of SARS-CoV-2. In addition, we tested the validated method on 572 purposively sampled field-collected non-conventional specimens from a cohort of 109 unvaccinated pregnant and 47 unvaccinated non-pregnant women to assess which candidate non-conventional maternal- and fetal-associated specimens may contribute to maternal-fetal viral vertical transmission.
RESULTSPositive detection of SARS-CoV-2 viral RNA in non-conventional specimens was demonstrated and verified. Of the 572 non-conventional samples tested, 1.8% (10/572) were positively validated by RT-qPCR for SARS-CoV-2 in the maternal-associated specimens particularly the rectal (5), placental (1), and cervical (4) swabs among six pregnant and four non-pregnant individuals. In contrast, no SARS-CoV-2 viral RNA was detected in fetal-associated specimens.
CONCLUSIONThe results of the validation study may serve as an additional diagnostic screening layer to support maternal-child care. Furthermore, viral detection in these non-conventional maternal specimens may also be utilized to provide guidance in the clinical management of neonates, and pregnant women during delivery.
Philippines ; Sars-cov-2 ; Pregnant Women ; Umbilical Cord ; Amniotic Fluid ; Polymerase Chain Reaction ; Placenta
5.Broad Panel Respiratory Multiplex PCR (Pneumonia Panel) in improving overall survival, length of hospital stay, and antibiotic free days among patients with community acquired pneumonia - A randomized controlled trial
Michael Anderson G. Lam ; Guinevere N. Dy-Agra
Philippine Journal of Health Research and Development 2024;28(3):15-19
BACKGROUND
Broad Panel Respiratory Multiplex PCR (Pneumonia Panel) tests a panel of bacteria and viruses associated with community acquired pneumonia (CAP) which help streamline antimicrobial therapy. Recently, pneumonia panel aids clinicians in early streamlining of antimicrobials as opposed to waiting for bacterial culture results [2].
OBJECTIVETo determine whether the use of pneumonia panel improves the overall survival rate, length of hospital stay, and number of antibiotic free days among hospitalized CAP patients.
METHODOLOGYIn this RCT, adult patients admitted for CAP were randomized to perform pneumonia panel and sputum culture (pneumonia panel group) versus sputum culture only (control group). The results were relayed to the medical team and were incorporated into the medical records. Length of hospital stay, antibiotic free days in day 28, and mortality rates were the primary outcomes measured.
RESULTSEighty participants completed the study. There was no significant difference in the length of hospital stay (p-value 0.073, 95% C.I.), duration of antibiotic therapy (p-value 0.332, 95% C.I.), and mortality rates (p-value 0.570, 95% C.I.) between the 2 groups.
CONCLUSIONRoutine use of pneumonia panel does not significantly reduce length of hospital stay, duration of antibiotic therapy, and mortality rates among admitted patients with moderate to severe CAP. The benefit of pneumonia panel was seen on early detection of drug resistant pathogen resulting in early antibiotic escalation and shorter duration of antibiotic therapy. Further studies are necessary to show its benefit in the high risk population.
Polymerase Chain Reaction ; Pneumonia
6.Establishment and Modification of Ninety-seven Pneumococcal Serotyping Assays Based on Quantitative Real-time Polymerase Chain Reaction.
Jie CHE ; Bo Han CHEN ; Li XU ; Yuan GAO ; Meng Meng YUE ; Zi Man CHEN ; Mao Jun ZHANG ; Zhu Jun SHAO
Biomedical and Environmental Sciences 2023;36(9):787-799
OBJECTIVE:
To establish and modify quantitative real-time polymerase chain reaction (qPCR)-based serotyping assays to distinguish 97 pneumococcal serotypes.
METHODS:
A database of capsular polysaccharide ( cps) loci sequences was generated, covering 97 pneumococcal serotypes. Bioinformatics analyses were performed to identify the cps loci structure and target genes related to different pneumococcal serotypes with specific SNPs. A total of 27 novel qPCR serotyping assay primers and probes were established based on qPCR, while 27 recombinant plasmids containing serotype-specific DNA sequence fragments were constructed as reference target sequences to examine the specificity and sensitivity of the qPCR assay. A panel of pneumococcal reference strains was employed to evaluate the capability of pneumococcal serotyping.
RESULTS:
A total of 97 pneumococcal serotyping assays based on qPCR were established and modified, which included 64 serotypes previously reported as well as an additional 33 serotypes. Twenty-seven novel qPCR serotyping target sequences were implemented in the pneumococcal qPCR serotyping system. A total of 97 pneumococcal serotypes, which included 52 individual serotypes and 45 serotypes belonging to 20 serogroups, could not be identified as individual serotypes. The sensitivity of qPCR assays based on 27 target sequences was 1-100 copies/µL. The specificity of the qPCR assays was 100%, which were tested by a panel of 90 serotypes of the pneumococcal reference strains.
CONCLUSION
A total of 27 novel qPCR assays were established and modified to analyze 97 pneumococcal serotypes.
Real-Time Polymerase Chain Reaction
;
Serotyping
;
Streptococcus pneumoniae/genetics*
;
Serogroup
7.Development and application of a rapid scheme for detection of respiratory virus nucleic acid.
Yuanyuan HUANG ; Yu WANG ; Chengxing ZHOU ; Zhichao ZHOU ; Bingliang ZHOU ; Wenkuan LIU ; Rong ZHOU ; Hong CAO
Chinese Journal of Biotechnology 2023;39(9):3838-3848
This study aimed to develop a portable, accurate and easy-to-operate scheme for rapid detection of respiratory virus nucleic acid. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the effect of extraction-free respiratory virus treatment reagent (RTU) on viral nucleic acid treatment and the effect of ultra-fast fluorescence quantitative PCR instrument (FQ-8A) on nucleic acid amplification, respectively. RTU and FQ-8A were combined to develop a rapid detection scheme for respiratory virus nucleic acid, and the positive detection rate was judged by Ct value using a fluorescence quantitative PCR instrument, and the accuracy of the scheme in clinical samples detection was investigated. The results showed that RTU had comparable sensitivity to the automatic nucleic acid extraction instrument, its extraction efficiency was comparable to the other 3 extraction methods when extracting samples of different virus types, but the extraction time of RTU was less than 5 min. FQ-8A had good consistency in detection respiratory syncytial virus (RSV) and adenovirus (ADV) compared with the control instrument ABI-7500, with kappa coefficients of 0.938 (P < 0.001) and 0.887 (P < 0.001), respectively, but the amplification time was only about 0.5 h. The RTU and FQ-8A combined rapid detection scheme had a highly consistent detection rate with the conventional detection scheme, with a sensitivity of 91.70% and specificity of 100%, and a kappa coefficient was 0.944 (P < 0.001). In conclusion, by combining RTU with FQ-8A, a rapid respiratory virus nucleic acid detection scheme was developed, the whole process could be completed in 35 min. The scheme is accurate and easy-to-operate, and can provide important support for the rapid diagnosis and treatment of respiratory virus.
Humans
;
Respiratory Syncytial Virus Infections/diagnosis*
;
Respiratory Syncytial Virus, Human/genetics*
;
Nucleic Acid Amplification Techniques
;
Real-Time Polymerase Chain Reaction
;
Adenoviridae
;
Sensitivity and Specificity
8.Selection and validation of reference genes for quantitative real-time PCR analysis in Paeonia veitchii.
Meng-Ting LUO ; Jun-Zhang QUBIE ; Ming-Kang FENG ; A-Xiang QUBIE ; Bin HE ; Yue-Bu HAILAI ; Wen-Bing LI ; Zheng-Ming YANG ; Ying LI ; Xin-Jia YAN ; Yuan LIU ; Shao-Shan ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5759-5766
Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.
Real-Time Polymerase Chain Reaction/methods*
;
Paeonia/genetics*
;
Actins/genetics*
;
Reproducibility of Results
;
Transcriptome
;
Glyceraldehyde-3-Phosphate Dehydrogenases/genetics*
;
Reference Standards
;
Gene Expression Profiling/methods*
9.The application of PCR-SSP with the serology in identification and genotyping of ABO ambiguous blood group.
Yanyan SONG ; Yuxi ZHANG ; Xinrui CAO ; Xiaonan YU ; Wei ZHENG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):824-827
Objective To investigate the effect of blood group serology and polymerase chain reaction with sequence-specific primers (PCR-SSP) on identification and genotyping of ambiguous ABO blood group. Methods Eighty suspicious ABO blood group samples were identified by serology and polymerase chain reaction with sequence-specific primers (PCR-SSP). The final blood group type and the strategy of the transfusion of each case were determined according to the results of serology and PCR-SSP. Results 40 cases were confirmed to be subtypes, and the remaining 40 cases were normal types with weakened antigens or missing antibodies due to other reasons. The results of molecular genetic blood group typing based on PCR-SSP were 41 cases of subtypes (There were 3 discrepancies between two methods: one was Ael identified by serological methods, while its gene type was O2O2; one was common type O, while its gene type was BO1; one was type A, while its gene type was AB.) and 39 cases of normal ones. Conclusion Genotyping technology combined with serological typing has an important significance in identification of ABO blood groups.
ABO Blood-Group System/genetics*
;
Genotype
;
Polymerase Chain Reaction
;
Antibodies
;
DNA Primers
10.Molecular Mechanism of a Rhesus D Variant Individual with RHD*845A/1227A.
Xiu-Hua XIE ; Fan WU ; Qing DENG ; Nai-Bao ZHUANG
Journal of Experimental Hematology 2023;31(4):1150-1154
OBJECTIVE:
To explore the genetic mutation mechanism of a rare Rhesus D variant individual.
METHODS:
Regular serological assay was used for determination of Rh type for the sample. Indirect anti-human globulin test (IAT) was used to confirm the RhD antigen and screen the antibodies. D-screen reagent was used to analyze the RhD epitopes of the sample. RHD genotype and RHD zygosity testing of the sample were detected by palymerase chain reaction with sequence-specific primers (PCR-SSP). The full length coding region of RHD gene was sequenced. RHD mRNA was detected using reverse transcription polymerase chain reaction (RT-PCR). The PCR products were cloned and sequenced.
RESULTS:
The RhD blood group of the sample was determined as weak D, and the Rh phenotype was CcDEe. The antibody screening was negative. The sample tested with all monoclonal anti-Ds in D-screen showed the D epitope profiles as partial D types. The analysis of RHD gene sequence indicated that the individual with RHD c.845G/A and RHD c.1227G/A base heterozygosis. Three kinds of alternative splicing isoforms were obtained by TA cloning and sequencing.
CONCLUSION
The object has RHD c.845G/A and RHD c.1227G/A mutation. This heterozygous mutation is responsible for the low expression of RhD antigen on the red blood cells of the sample.
Alleles
;
Blood Group Antigens
;
Genotype
;
Mutation
;
Phenotype
;
Polymerase Chain Reaction
;
Rh-Hr Blood-Group System/genetics*
;
Humans


Result Analysis
Print
Save
E-mail