1.Deciphering the placental abnormalities associated with somatic cell nuclear transfer at single-nucleus resolution.
Liyuan JIANG ; Xin WANG ; Leyun WANG ; Sinan MA ; Yali DING ; Chao LIU ; Siqi WANG ; Xuan SHAO ; Ying ZHANG ; Zhikun LI ; Wei LI ; Guihai FENG ; Qi ZHOU
Protein & Cell 2023;14(12):924-928
2.Generation of genetic modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5.
Xiaoqing ZHOU ; Yu LIU ; Chengcheng TANG ; Lingyin CHENG ; Shuwen ZHENG ; Yuling ZHENG ; Min CHEN ; Huaqiang YANG ; Qingjian ZOU ; Liangxue LAI
Chinese Journal of Biotechnology 2022;38(3):1096-1111
Pigs are considered as ideal donors for xenotransplantation because they have many physiological and anatomical characteristics similar to human beings. However, antibody-mediated immunity, which includes both natural and induced antibody responses, is a major challenge for the success of pig-to-primate xenotransplantation. Various genetic modification methods help to tailor pigs to be appropriate donors for xenotransplantation. In this study, we applied transcription activator-like effector nuclease (TALEN) to knock out the porcine α-1, 3-galactosyltransferase gene GGTA1, which encodes Gal epitopes that induce hyperacute immune rejection in pig-to-human xenotransplantation. Meanwhile, human leukocyte antigen-G5 gene HLA-G5, which acts as an immunosuppressive factor, was co-transfected with TALEN into porcine fetal fibroblasts. The cell colonies of GGTA1 biallelic knockout with positive transgene for HLA-G5 were chosen as nuclear donors to generate genetic modified piglets through a single round of somatic cell nuclear transfer. As a result, we successfully obtained 20 modified piglets that were positive for GGTA1 knockout (GTKO) and half of them expressed the HLA-G5 protein. Gal epitopes on the cell membrane of GTKO/HLA-G5 piglets were completely absent. Western blotting and immunofluorescence showed that HLA-G5 was expressed in the modified piglets. Functionally, the fibroblasts from the GTKO/HLA-G5 piglets showed enhanced resistance to complement-mediated lysis ability compared with those from GTKO-only or wild-type pigs. These results indicate that the GTKO/HLA-G5 pigs could be a valuable donor model to facilitate laboratory studies and clinics for xenotransplantation.
Animals
;
Animals, Genetically Modified
;
Gene Knockout Techniques
;
HLA Antigens
;
Humans
;
Nuclear Transfer Techniques
;
Swine
;
Transplantation, Heterologous
3.Expression of polo-like kinase 1 in pre-implantation stage murine somatic cell nuclear transfer embryos
Journal of Veterinary Science 2019;20(1):2-9
Somatic cell nuclear transfer (SCNT) has various applications in research, as well as in the medical field and animal husbandry. However, the efficiency of SCNT is low and the accurate mechanism of SCNT in murine embryo development is unreported. In general, the developmental rate of SCNT murine embryos is lower than in vivo counterparts. In previous studies, polo-like kinase 1 (Plk1) was reported to be a crucial element in cell division including centrosome maturation, cytokinesis, and spindle formation. In an initial series of experiments in this study, BI2536, a Plk1 inhibitor, was treated to in vivo-fertilized embryos and the embryos failed to develop beyond the 2-cell stage. This confirmed previous findings that Plk1 is crucial for the first mitotic division of murine embryos. Next, we investigated Plk1's localization and intensity by immunofluorescence analysis. In contrast to normally developed embryos, SCNT murine embryos that failed to develop exhibited two types of Plk1 expressions; a low Plk1 expression pattern and ectopic expression of Plk1. The results show that Plk1 has a critical role in SCNT murine embryos. In conclusion, this study demonstrated that the SCNT murine embryos fail to develop beyond the 2-cell stage, and the embryos show abnormal Plk1 expression patterns, which may one of the main causes of developmental failure of early SCNT murine embryos.
Animal Husbandry
;
Cell Division
;
Centrosome
;
Cytokinesis
;
Ectopic Gene Expression
;
Embryonic Development
;
Embryonic Structures
;
Female
;
Fluorescent Antibody Technique
;
Nuclear Transfer Techniques
;
Phosphotransferases
;
Pregnancy
4.Production of transgenic pigs using a pGFAP-CreER(T2)/EGFP(LoxP) inducible system for central nervous system disease models
Seon Ung HWANG ; Kiyoung EUN ; Junchul David YOON ; Hyunggee KIM ; Sang Hwan HYUN
Journal of Veterinary Science 2018;19(3):434-445
Transgenic (TG) pigs are important in biomedical research and are used in disease modeling, pharmaceutical toxicity testing, and regenerative medicine. In this study, we constructed two vector systems by using the promoter of the pig glial fibrillary acidic protein (pGFAP) gene, which is an astrocyte cell marker. We established donor TG fibroblasts with pGFAP-CreER(T2)/LCMV-EGFP(LoxP) and evaluated the effect of the transgenes on TG-somatic cell nuclear transfer (SCNT) embryo development. Cleavage rates were not significantly different between control and transgene-donor groups. Embryo transfer was performed thrice just before ovulation of the surrogate sows. One sow delivered 5 TG piglets at 115 days after pregnancy. Polymerase chain reaction (PCR) analysis with genomic DNA isolated from skin tissues of TG pigs revealed that all 5 TG pigs had the transgenes. EGFP expression in all organs tested was confirmed by immunofluorescence staining and PCR. Real-time PCR analysis showed that pGFAP promoter-driven Cre fused to the mutated human ligand-binding domain of the estrogen receptor (CreER(T2)) mRNA was highly expressed in the cerebrum. Semi-nested PCR analysis revealed that CreER(T2)-mediated recombination was induced in cerebrum and cerebellum but not in skin. Thus, we successfully generated a TG pig with a 4-hydroxytamoxifen (TM)-inducible pGFAP-CreER(T2)/EGFP(LoxP) recombination system via SCNT.
Animals, Genetically Modified
;
Astrocytes
;
Central Nervous System
;
Cerebellum
;
Cerebrum
;
DNA
;
Embryo Transfer
;
Embryonic Development
;
Estrogens
;
Female
;
Fibroblasts
;
Fluorescent Antibody Technique
;
Glial Fibrillary Acidic Protein
;
Humans
;
Nuclear Transfer Techniques
;
Ovulation
;
Polymerase Chain Reaction
;
Pregnancy
;
Real-Time Polymerase Chain Reaction
;
Recombination, Genetic
;
Regenerative Medicine
;
RNA, Messenger
;
Skin
;
Swine
;
Tissue Donors
;
Toxicity Tests
;
Transgenes
5.Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology.
Jung Taek KANG ; Dae Kee KWON ; A Rum PARK ; Eun Jin LEE ; Yun Jin YUN ; Dal Young JI ; Kiho LEE ; Kwang Wook PARK
Journal of Veterinary Science 2016;17(1):89-96
Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation. Human decay-accelerating factor (hDAF) gene, which can produce a complement inhibitor to protect cells from complement attack after xenotransplantation, was also integrated into the genome simultaneously. Plasmids coding for the TALEN pair and hDAF gene were transfected into porcine cells by electroporation to disrupt the porcine GGTA1 gene and express hDAF. The transfected cells were then sorted using a biotin-labeled IB4 lectin attached to magnetic beads to obtain GGTA1 deficient cells. As a result, we established GGTA1 knockout (KO) cell lines with biallelic modification (35.0%) and GGTA1 KO cell lines expressing hDAF (13.0%). When these cells were used for somatic cell nuclear transfer, we successfully obtained live GGTA1 KO pigs expressing hDAF. Our results demonstrate that TALEN-mediated genome editing is efficient and can be successfully used to generate gene edited pigs.
Animals
;
Antigens, CD55/genetics
;
Cell Line
;
DNA Breaks, Double-Stranded
;
Exons/genetics
;
Galactosyltransferases/*genetics
;
Gene Editing/*veterinary
;
Gene Knockout Techniques
;
Humans
;
Nuclear Transfer Techniques
;
Swine
;
Transcription Activator-Like Effector Nucleases/*genetics/*metabolism
6.BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs.
Shaozheng SONG ; Mengmin ZHU ; Yuguo YUAN ; Yao RONG ; Sheng XU ; Si CHEN ; Junyan MEI ; Yong CHENG
Chinese Journal of Biotechnology 2016;32(3):329-338
To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.
Animals
;
Animals, Genetically Modified
;
genetics
;
Female
;
Fibroblasts
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Goats
;
genetics
;
Humans
;
Lactoferrin
;
genetics
;
Lactoglobulins
;
genetics
;
Milk
;
chemistry
;
Nuclear Transfer Techniques
;
Plasmids
;
Pregnancy
;
Transfection
7.Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs.
Joohyeong LEE ; Jong Im PARK ; Jung Im YUN ; Yongjin LEE ; Hwanyul YONG ; Seung Tae LEE ; Choon Keun PARK ; Sang Hwan HYUN ; Geun Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2015;16(3):373-380
This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blastocyst formation after PA was significantly increased by rapamycin treatment during 22-42 h and 0-42 h (46.6% and 46.5%, respectively) relative to the control (33.3%) and 0-22 h groups (38.6%) in MPCOCs. In SCNT, blastocyst formation tended to increase in MPCOCs treated with rapamycin during 0-42 h of IVM relative to untreated oocytes (20.3% vs. 14.3%, 0.05 < p < 0.1), while no improvement was observed in MGCOCs. Gene expression analysis revealed that transcript abundance of Beclin 1 and microtubule-associated protein 1 light chain 3 mRNAs was significantly increased in MPCOCs by rapamycin relative to the control. Our results demonstrated that autophagy induction by rapamycin during IVM improved developmental competence of oocytes derived from MPCOCs.
Animals
;
Embryonic Development/*drug effects
;
Female
;
In Vitro Oocyte Maturation Techniques/veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/growth & development
;
*Parthenogenesis
;
Sirolimus/*pharmacology
;
Sus scrofa/*growth & development/metabolism
8.Intrapancreatic ectopic splenic tissue found in a cloned miniature pig.
Ok Jae KOO ; Seung Kwon HA ; Sol Ji PARK ; Hee Jung PARK ; Su Jin KIM ; Daekee KWON ; Jung Taek KANG ; Joon Ho MOON ; Eun Jung PARK ; Goo JANG ; Byeong Chun LEE
Journal of Veterinary Science 2015;16(2):241-244
Somatic cell nuclear transfer (SCNT) is a cost-effective technique for producing transgenic pigs. However, abnormalities in the cloned pigs might prevent use these animals for clinical applications or disease modeling. In the present study, we generated several cloned pigs. One of the pigs was found to have intrapancreatic ectopic splenic tissue during histopathology analysis although this animal was grossly normal and genetically identical to the other cloned pigs. Ectopic splenic tissue in the pancreas is very rare, especially in animals. To the best of our knowledge, this is the first such report for cloned pigs.
Animals
;
Animals, Genetically Modified
;
Choristoma/pathology/*veterinary
;
Cloning, Organism
;
Nuclear Transfer Techniques/*veterinary
;
*Pancreas
;
Splenic Diseases/pathology/*veterinary
;
Swine
;
Swine Diseases/*pathology
;
Swine, Miniature
9.In vitro development of canine somatic cell nuclear transfer embryos in different culture media.
Dong Hoon KIM ; Jin Gu NO ; Mi Kyung CHOI ; Dong Hyeon YEOM ; Dong Kyo KIM ; Byoung Chul YANG ; Jae Gyu YOO ; Min Kyu KIM ; Hong Tea KIM
Journal of Veterinary Science 2015;16(2):233-235
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.
Animals
;
Blastocyst/cytology
;
Cloning, Organism/*veterinary
;
Culture Media/metabolism
;
Dogs/*embryology
;
Embryo Culture Techniques/*veterinary
;
*Embryonic Development
;
Nuclear Transfer Techniques/*veterinary
10.Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.
Qing-Hua WANG ; Yun PENG ; Xin-Yong CAI ; Meng WAN ; Yu LIU ; Hong WEI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(4):585-590
Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.
Animals
;
Blastocyst
;
physiology
;
Cell Proliferation
;
Cells, Cultured
;
Ear
;
embryology
;
growth & development
;
Fibroblasts
;
cytology
;
physiology
;
transplantation
;
Nuclear Transfer Techniques
;
Swine
;
Swine, Miniature
;
anatomy & histology
;
embryology
;
growth & development

Result Analysis
Print
Save
E-mail