1.Research progress of celastrol on the prevention and treatment of metabolic associated fatty liver disease.
Yun-Chao LIU ; Ying ZHANG ; Shu-Cun QIN ; Jun-Li XUE
Acta Physiologica Sinica 2023;75(5):682-690
Metabolic associated fatty liver disease (MAFLD) is a liver disease with hepatocyte steatosis caused by metabolic disorders, which is closely related to obesity, diabetes, metabolic dysfunction, and other factors. Its pathological process changes from simple steatosis, liver inflammation to non-alcoholic steatohepatitis (NASH), and then leads to liver fibrosis, cirrhosis, and liver cancer. At present, no specific therapeutics are available for treatment of MAFLD targeting its etiology. Celastrol is the main active component of the traditional Chinese medicine Celastrus orbiculatus Thunb. In recent years, it has been found that celastrol shows important medicinal value in regulating lipid metabolism, reducing fat and weight, and protecting liver, and then ameliorates MAFLD. This article reviews the related research progress of celastrol in the prevention and treatment of MAFLD, so as to provide a reference for the comprehensive development and utilization of celastrol.
Humans
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Liver/pathology*
;
Pentacyclic Triterpenes/metabolism*
;
Obesity
2.The role of apolipoprotein C3 in the regulation of nonalcoholic fatty liver disease, glucose and lipid metabolism, and islet β cell function.
Shan YAN ; Zhi-Yong DING ; Yuan GAO ; Wang-Jia MAO ; Xiao-Yun CHENG
Acta Physiologica Sinica 2023;75(6):767-778
As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet β cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet β cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet β cell function, and the underlying mechanism remains to be further discussed.
Apolipoprotein C-III/genetics*
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Glucose/metabolism*
;
Lipid Metabolism
;
Humans
;
Animals
;
Hypertriglyceridemia/metabolism*
;
Islets of Langerhans/metabolism*
3.Liver macrophages show an immunotolerance phenotype in nonalcoholic fatty liver combined with Porphyromonas gingivalis-lipopolysaccharide infection.
Lijia GUO ; Yitong LIU ; Yingyi CHEN ; Junji XU ; Yi LIU
West China Journal of Stomatology 2023;41(4):385-394
OBJECTIVES:
This study aimed to explore the functions and potential regulatory targets of local macrophages in nonalcoholic fatty liver combined with Porphyromonas gingivalis (P. gingivalis)infection.
METHODS:
Single-cell RNA sequencing was used to analyze the phenotypes and functional changes in various cells in the liver tissue of nonalcoholic steatohepatitis (NASH) mice fed with P. gingivalis. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay, and immunofluorescence staining were applied to observe the inflammation and expression levels of macrophage antigen presenting functional markers in the NASH liver. Oil red staining was performed to observe the accumulation of local adipose tissue in the NASH liver. Results were verified through RT-PCRand RNA sequencing using P. gingivalis-lipopolysaccharide treated mouse peritoneal macrophages.
RESULTS:
In comparison with healthy livers with Kupffer cells, the NASH liver combined with P. gingivalis infection-related macrophages showed significant heterogeneity. C1qb, C1qc, Mafb, Apoe, and Cd14 were highly expressed, but Cd209a, H2-Aa, H2-Ab1, and H2-DMb1, which are related to the antigen presentation function, were weakly expressed. Further in vivo and in vitro investigations indicated that the activation and infiltration of these macrophages may be due to local P. gingivalis-lipopolysaccharide accumulation.
CONCLUSIONS
P. gingivalis-lipopolysaccharide induces a local macrophage immunotolerance phenotype in nonalcoholic fatty liver, which may be the key mechanism of periodontitis pathogen infection that promotes NASH inflammation and pathogenesis. This study further clarifies the dysfunction and regulatory mechanisms of macrophages in the pathogenesis of P. gingivalis-infected NASH, thereby providing potential therapeutic targets for its clinical treatment.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Kupffer Cells/pathology*
;
Porphyromonas gingivalis
;
Lipopolysaccharides/metabolism*
;
Inflammation/pathology*
;
Macrophages/metabolism*
;
Mice, Inbred C57BL
4.Zuogui Jiangtang Qinggan Formula improves glucolipid metabolism in type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease by regulating FoxO1/MTP/APOB signaling pathway.
Yi-Xin XIANG ; Ya-Lan HUANG ; Min ZHOU ; Jun-Ju ZOU ; Xiu LIU ; Zi-Yu LIU ; Fan XIAO ; Rong YU ; Qin XIANG
China Journal of Chinese Materia Medica 2023;48(16):4438-4445
This study aimed to investigate the effect and mechanism of Zuogui Jiangtang Qinggan Formula(ZGJTQG) on the glucolipid metabolism of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD). NAFLD was induced by a high-fat diet(HFD) in MKR mice(T2DM mice), and a model of T2DM combined with NAFLD was established. Forty mice were randomly divided into a model group, a metformin group(0.067 g·kg~(-1)), and high-and low-dose ZGJTQG groups(29.64 and 14.82 g·kg~(-1)), with 10 mice in each group. Ten FVB mice of the same age were assigned to the normal group. Serum and liver tissue specimens were collected from mice except for those in the normal and model groups after four weeks of drug administration by gavage, and fasting blood glucose(FBG) and fasting insulin(FINS) levels were measured. The levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL) were detected by the single reagent GPO-PAP method. Very low-density lipoprotein(VLDL) was detected by enzyme-linked immunosorbent assay(ELISA). Alanine aminotransferase(ALT) and aspartate ami-notransferase(AST) were determined by the Reitman-Frankel assay. The pathological changes in the liver were observed by hematoxylin-eosin(HE) staining and oil red O staining. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) and Western blot were adopted to detect the mRNA and protein expression of forkhead transcription factor O1(FoxO1), microsomal triglyceride transfer protein(MTP), and apolipoprotein B(APOB) in the liver. The results showed that high-dose ZGJTQG could signi-ficantly reduce the FBG and FINS levels(P<0.05, P<0.01), improve glucose tolerance and insulin resistance(P<0.05, P<0.01), alleviate the liver damage caused by HFD which was reflected in improving liver steatosis, and reduce the serum levels of TC, TG, LDL, VLDL, ALT, and AST(P<0.05, P<0.01) in T2DM mice combined with NAFLD. The findings also revealed that the mRNA and protein expression of FoxO1, MTP, and APOB in the liver was significantly down-regulated after the intervention of high-dose ZGJTQG(P<0.05, P<0.01). The above study showed that ZGJTQG could effectively improve glucolipid metabolism in T2DM combined with NAFLD, and the mechanism was closely related to the regulation of the FoxO1/MTP/APOB signaling pathway.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Liver
;
Lipoproteins, LDL/metabolism*
;
Signal Transduction
;
Diet, High-Fat/adverse effects*
;
RNA, Messenger/metabolism*
5.Diosgenin alleviates NAFLD induced by a high-fat diet in rats via mTOR/SREBP-1c/HSP60/MCAD/SCAD signaling pathway.
Su-Wen CHEN ; Guo-Liang YIN ; Chao-Yuan SONG ; De-Cheng MENG ; Wen-Fei YU ; Xin ZHANG ; Ya-Nan FENG ; Peng-Peng LIANG ; Feng-Xia ZHANG
China Journal of Chinese Materia Medica 2023;48(19):5304-5314
This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid β oxidation in the liver.
Rats
;
Male
;
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
;
Diet, High-Fat/adverse effects*
;
Diosgenin/metabolism*
;
Chaperonin 60/therapeutic use*
;
Rats, Sprague-Dawley
;
Liver
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Triglycerides
;
RNA, Messenger/metabolism*
;
Simvastatin/therapeutic use*
;
Body Weight
;
Lipid Metabolism
;
Mammals/metabolism*
6.Advances in traditional Chinese medicine treatment of non-alcoholic fatty liver disease via farnesoid X receptor.
Huan-Huan ZHAO ; Ji CUI ; Jin-Jia ZHANG ; Jia-Xin CHEN ; An-Hua SHI ; Xiao-Song ZHU
China Journal of Chinese Materia Medica 2023;48(24):6582-6591
Non-alcoholic fatty liver disease(NAFLD) is a chronic metabolic condition with rapidly increasing incidence, becoming a public health issue of worldwide concern. Studies have shown that farnesoid X receptor(FXR)-based modulation of downstream targets can improve liver function and metabolic status in the patients with NAFLD and may be a potential drug target for treating this di-sease. Great progress has been achieved in the development of drugs targeting FXR for the treatment of NAFLD. A number of studies have explored the traditional Chinese medicine and their active ingredients for the treatment of NAFLD via FXR considering the high safety and efficacy and mild side effects. This paper systematically describes the mechanism of traditional Chinese medicines in the treatment of NAFLD via FXR and the downstream targets, aiming to provide precise targets for the drug development and clinical treatment of NAFLD.
Humans
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Liver
;
Medicine, Chinese Traditional/adverse effects*
;
Receptors, Cytoplasmic and Nuclear/metabolism*
7.Lipid-lowering effect of drug pair Scutellariae Radix-Coptidis Rhizoma based on lipomics.
Wang-Zhen-Zu LIU ; Xiao-Jing QIAN ; Jia-Qi ZHANG ; Kun LIANG ; Cheng HU ; Xin-Hong WANG
China Journal of Chinese Materia Medica 2023;48(24):6711-6720
This study investigated the mechanism of action of Scutellariae Radix-Coptidis Rhizoma(SR-CR) in intervening in non-alcoholic fatty liver disease(NAFLD) in rats based on lipidomics. Thirty-six SD rats were divided into a control group, a model group, SR-CR groups of different doses, and a simvastatin group, with six rats in each group. Rats in the control group were fed on a normal diet, while those in the remaining groups were fed on a high-lipid diet. After four weeks of feeding, drug treatment was carried out and rats were sacrificed after 12 weeks. Serum liver function and lipid indexes were detected using kits, and the pathomorphology of liver tissues was evaluated by hematoxylin-eosin(HE) staining and oil red O staining. Changes in lipid levels in rats were detected using the LC-MS technique. Differential lipid metabolites were screened by multivariate statistical analysis, and lipid metabolic pathways were plotted. The changes in lipid-related protein levels were further verified by Western blot. The results showed that compared with the control group, the model group showed increased levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.01), and decreased levels of γ-glutamyl transferase(γ-GT) and high-density lipoprotein cholesterol(HDL-c)(P<0.01), which were significantly recovered by the intervention of SR-CR. HE staining and oil red O staining showed that different doses of SR-CR could reverse the steatosis in the rat liver in a dose-dependent manner. After lipidomics analysis, there were significant differences in lipid metabolism between the model group and the control group, with 54 lipids significantly altered, mainly including glycerolipids, phosphatidylcholine, and sphingolipids. After administration, 44 differential lipids tended to normal levels, which indicated that SR-CR groups of different doses significantly improved the lipid metabolism level in NAFLD rats. Western blot showed that SR-CR significantly decreased TG-synthesis enzyme 1(DGAT1), recombinant lipin 1(LPIN1), fatty acid synthase(FASN), acetyl-CoA carboxylase 1(ACC1), and increased the phosphorylation level of ACC1. These changes significantly decreased the synthesis of TG and increased the rate of its decomposition, which enhanced the level of lipid metabolism in the body and finally achieved the lipid-lowering effect. SR-CR can improve NAFLD by inhibiting the synthesis of fatty acids and TG.
Rats
;
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Scutellaria baicalensis
;
Drugs, Chinese Herbal/therapeutic use*
;
Pharmaceutical Preparations
;
Rats, Sprague-Dawley
;
Liver
;
Triglycerides/metabolism*
;
Cholesterol
;
Diet, High-Fat
;
Azo Compounds
8.Hepatocyte steatosis activates macrophage inflammatory response accelerating atherosclerosis development.
Yue LI ; Xize WU ; Jiaxiang PAN ; Lihong GONG ; Dongyu MIN
Journal of Zhejiang University. Medical sciences 2023;52(6):751-765
OBJECTIVES:
To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology.
METHODS:
Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively.
RESULTS:
A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage.
CONCLUSIONS
Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.
Animals
;
Mice
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Cyclooxygenase 2/metabolism*
;
PPAR gamma/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Mice, Inbred C57BL
;
Hepatocytes
;
Macrophages/metabolism*
;
Liver
9.SBC (Sanhuang Xiexin Tang combined with Baihu Tang plus Cangzhu) alleviates NAFLD by enhancing mitochondrial biogenesis and ameliorating inflammation in obese patients and mice.
Zhitao REN ; Gemin XIAO ; Yixin CHEN ; Linli WANG ; Xiaoxin XIANG ; Yi YANG ; Siying WEN ; Zhiyong XIE ; Wenhui LUO ; Guowei LI ; Wenhua ZHENG ; Xiaoxian QIAN ; Rihan HAI ; Liansheng YANG ; Yanhua ZHU ; Mengyin CAI ; Yinong YE ; Guojun SHI ; Yanming CHEN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):830-841
In the context of non-alcoholic fatty liver disease (NAFLD), characterized by dysregulated lipid metabolism in hepatocytes, the quest for safe and effective therapeutics targeting lipid metabolism has gained paramount importance. Sanhuang Xiexin Tang (SXT) and Baihu Tang (BHT) have emerged as prominent candidates for treating metabolic disorders. SXT combined with BHT plus Cangzhu (SBC) has been used clinically for Weihuochisheng obese patients. This retrospective analysis focused on assessing the anti-obesity effects of SBC in Weihuochisheng obese patients. We observed significant reductions in body weight and hepatic lipid content among obese patients following SBC treatment. To gain further insights, we investigated the effects and underlying mechanisms of SBC in HFD-fed mice. The results demonstrated that SBC treatment mitigated body weight gain and hepatic lipid accumulation in HFD-fed mice. Pharmacological network analysis suggested that SBC may affect lipid metabolism, mitochondria, inflammation, and apoptosis-a hypothesis supported by the hepatic transcriptomic analysis in HFD-fed mice treated with SBC. Notably, SBC treatment was associated with enhanced hepatic mitochondrial biogenesis and the inhibition of the c-Jun N-terminal kinase (JNK)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK)/NF-κB pathways. In conclusion, SBC treatment alleviates NAFLD in both obese patients and mouse models by improving lipid metabolism, potentially through enhancing mitochondrial biogenesis. These effects, in turn, ameliorate inflammation in hepatocytes.
Humans
;
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
NF-kappa B/metabolism*
;
Organelle Biogenesis
;
Retrospective Studies
;
Mice, Inbred C57BL
;
Obesity/metabolism*
;
Liver
;
Inflammation/metabolism*
;
Body Weight
;
Lipid Metabolism
;
Lipids
;
Diet, High-Fat/adverse effects*
10.Zuogui Jiangtang Qinggan Prescription promotes recovery of intestinal mucosal barrier in mice with type 2 diabetes mellitus and nonalcoholic fatty liver disease by improving intestinal flora homeostasis.
Jun-Ju ZOU ; Hong LI ; Min ZHOU ; Qiu-Qing HUANG ; Yong-Jun WU ; Rong YU
China Journal of Chinese Materia Medica 2023;48(2):525-533
This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Diabetes Mellitus, Type 2/metabolism*
;
Occludin/pharmacology*
;
Claudin-1/metabolism*
;
Intestinal Mucosa
;
Liver
;
Triglycerides/metabolism*
;
Diet, High-Fat
;
Homeostasis
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail