1.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
2.Cimifugin ameliorates Crohn's disease-like colitis in mice by modulating Th-cell immune balance via inhibiting the MAPK pathway.
Lixia YIN ; Minzhu NIU ; Keni ZHANG ; Zhijun GENG ; Jianguo HU ; Jiangyan LI ; Jing LI
Journal of Southern Medical University 2025;45(3):595-602
OBJECTIVES:
To investigate the therapeutic effects of cimifugin on Crohn's disease (CD)-like colitis in mice and its possible mechanism.
METHODS:
Thirty adult male C57BL/6 mice were randomized equally into control group, 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis model group, and cimifugin treatment (daily gavage at 12.5 mg/kg) group. The therapeutic effect of cimifugin was evaluated by observing changes in body weight, disease activity index (DAI) scores, colon length, histopathological inflammation scores, and inflammatory cytokine levels in the colonic mucosa. Intestinal barrier integrity in the mice was assessed using immunofluorescence assay and Western blotting for claudin-1 and ZO-1; T-helper (Th) cell subset ratios in the mesenteric lymph nodes were analyzed with flow cytometry. Network pharmacology, KEGG enrichment analysis and molecular docking were used to predict the targets of cimifugin and analyze the key pathways and cimifugin-MAPK protein interactions, which were validated by Western blotting in the mouse models.
RESULTS:
In mice with TNBS-induced colitis, cimifugin treatment significantly attenuated body weight loss and colon shortening, lowered DAI and histopathological scores, decreased IFN-γ and IL-17 levels, and increased IL-4 and IL-10 levels in the colonic mucosa. Cimifugin treatment also significantly improved TNBS-induced claudin-1 dislocation and reduction of goblet cells, upregulated claudin-1 and ZO-1 expressions, reduced Th1 and Th17 cell percentages, and increased Th2 and Treg cell percentages in the colonic mucosa of the mice. KEGG analysis suggested a possible connection between the effect of cimifugin and MAPK signaling, and molecular docking showed strong binding affinity between cimifugin and MAPK core proteins. Western blotting demonstrated significantly decreased phosphorylation levels of JNK, ERK, and p38 in the colonic mucosa of cimifugin-treated mouse models.
CONCLUSIONS
Cimifugin alleviates TNBS-induced CD-like colitis by repairing intestinal barrier damage and restoring Th1/Th2 and Th17/Treg balance via suppressing MAPK pathway activation.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Crohn Disease/immunology*
;
Colitis/immunology*
;
MAP Kinase Signaling System/drug effects*
;
Trinitrobenzenesulfonic Acid
;
T-Lymphocytes, Helper-Inducer/drug effects*
;
Intestinal Mucosa
;
Disease Models, Animal
3.Effect of Afzelin on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice.
Zhi-Jun GENG ; Li-Xia YIN ; Min-Zhu NIU ; Jing-Jing YANG ; Xiao-Feng ZHANG ; Jing LI
Acta Academiae Medicinae Sinicae 2025;47(2):207-218
Objective To investigate the role and mechanism of afzelin(AFZ)in treating Crohn's disease-like colitis.Methods A mouse model of 2,4,6-trinitrobenzene sulfonic acid-induced colitis was established to assess the effect of AFZ on experimental colitis in vivo.A Caco-2 cell model of tumor necrosis factor(TNF)-α-induced inflammation was established to evaluate the effects of AFZ on the intestinal barrier function,intestinal epithelial cell apoptosis,and mitochondrial function in vitro.The animal and cell experiments were performed to validate the regulatory role of the adenosine monophosphate-activated protein kinase(AMPK)/silent information regulater 1(SIRT1)/peroxisome proliferator-activated receptor gamma coactivator(PGC)-1α pathway in the treatment of colitis with AFZ.Results AFZ reduced the disease activity index(P=0.003),weight loss(P<0.001),colon shortening(P<0.001),inflammation score(P=0.002),pro-inflammatory cytokine release(interleukin-6:P<0.001;TNF-α:P=0.010),and intestinal barrier permeability(fluorescein isothiocyanate dextran 4:P<0.001;intestinal-type fatty acid-binding protein:P=0.013).Meanwhile,AFZ increased the colonic transepithelial electric resistance(P=0.001),reduced bacterial translocation(P<0.001),and promoted the localization and up-regulated the expression of tight junction proteins [zonula occluden-1(P=0.005) and Claudin-1(P=0.024)].AFZ exerted a protective effect on the Caco-2 cells exposed to TNF-α in terms of intestinal epithelial cell permeability(P=0.017),transepithelial electric resistance(P=0.014),and tight junction protein[zonula occluden-1(P=0.014) and Claudin-1(P=0.006)] localization and expression.Furthermore,the cell and animal experiments confirmed that AFZ reduced the percentage of apoptosis(P<0.001,P=0.013)and the expression of cleaved-caspase 3(P=0.028,P=0.004)and Bax(P=0.004,P=0.020),and upregulated the Bcl2(P=0.020,P=0.006)level in intestinal epithelial cells.Additionally,AFZ increased the number of mitochondria,mitochondrial membrane potential,and copy number of mitochondrial DNA(P=0.007)in intestinal epithelial cells,while enhancing the activities of mitochondrial respiratory chain complex Ⅰ(P=0.005)and complex Ⅳ(P=0.001).The activation of the AMPK/SIRT1/PGC-1α pathway was involved in the protective effects of AFZ on mitochondrial function and apoptosis in intestinal epithelial cells.Conclusion AFZ alleviates mitochondrial dysfunction and apoptosis in intestinal epithelial cells by activating the AMPK/SIRT1/PGC-1α pathway,thereby ameliorating intestinal barrier dysfunction and experimental colitis.
Animals
;
Colitis/drug therapy*
;
Humans
;
Caco-2 Cells
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Apoptosis/drug effects*
;
Disease Models, Animal
;
AMP-Activated Protein Kinases/metabolism*
;
Sirtuin 1/metabolism*
4.MOR106 alleviates inflammation in mice with atopic dermatitis by blocking the JAK2/STAT3 signaling pathway and inhibiting IL-17C-mediated Tfh cell differentiation.
Limin TIAN ; Xiaohui HUYAN ; Sen YANG ; Mengjie WANG ; Yuenan YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):26-32
Objective To explore the significance of interleukin-17C(IL-17C)-mediated follicular helper T cell (Tfh) differentiation in atopic dermatitis (AD) model. Methods BALB/c mice were divided into control group, AD model group, low-dose MOR106 (anti-IL-17C huIgG1)(MDR106-L)treatment group and high-dose MOR106 (MOR106-H) treatment group, 8 mice in each group. Except for the control group, all the other groups were treated with 2, 4- dinitrochlorobenzene (DNCB) to establish AD models. The low-dose and high-dose MOR106 groups were treated with 5 mg/kg or 10 mg/kg MOR106 respectively. The differentiation of Tfh cell subsets in peripheral blood of mice was analyzed by flow cytometry, and the expression of Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signal pathway protein in skin tissue was detected by Western blot analysis. Results Compared with the control group, the dermatitis severity score, mass difference between two ears, spleen mass and spleen index of DNCB group increased significantly, while those of MOR106-L group and MOR106-H group decreased significantly. Compared with the control group, the Tfh subgroup of AD mice showed deregulated differentiation, resulting in a significant increase in the percentage of CD4+CXCR5+IFN-γ+Tfh1 cells, CD4+CXCR5+IL-17A+Tfh17 and CD4+CXCR5+IL-21+Tfh21 cells, and a significant decrease in the percentage of CD4+CXCR5+IL-10+Tfh10 cells and CD4+CXCR5+FOXP3+Tfr cells in peripheral blood. The protein levels of phosphorylated JAK2(p-JAK2) and p-STAT3 were significantly increased. MOR106 effectively reversed these changes of Tfh1, Tfh10, Tfh17, Tfh21 and Tfr cells in peripheral blood of AD mice. Compared with AD group, the levels of p-JAK2 and p-STAT3 protein in low-dose and high-dose MOR106 treatment groups decreased significantly. Conclusion MOR106 can reduce the inflammatory response of AD mice by blocking JAK2/STAT3 signaling pathway and inhibiting the differentiation of Tfh cells mediated by IL-17C.
Animals
;
Mice
;
Dermatitis, Atopic/drug therapy*
;
Interleukin-17
;
T Follicular Helper Cells
;
Janus Kinase 2
;
Dinitrochlorobenzene
;
Inflammation
;
Cell Differentiation
;
Signal Transduction
5.Asperosaponin VI alleviates TNBS-induced Crohn's disease-like colitis in mice by reducing intestinal epithelial cell apoptosis via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Minzhu NIU ; Lixia YIN ; Ting DUAN ; Ju HUANG ; Jing LI ; Zhijun GENG ; Jianguo HU ; Chuanwang SONG
Journal of Southern Medical University 2024;44(12):2335-2346
OBJECTIVES:
To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.
METHODS:
Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR. The effects of AVI on barrier function and apoptosis of mouse intestinal epithelial cells and TNF‑α‑treated Caco-2 cells were analyzed using immunofluorescence staining, TUNEL assay, and Western blotting. Network pharmacology, TUNEL assay, and Western blotting were performed to explore and validate the therapeutic mechanisms of AVI for CD.
RESULTS:
In the mouse models of CD-like colitis, AVI significantly improved body weight loss, colon shortening and DAI and tissue inflammation scores, alleviated intestinal villi and goblet cell injuries, and lowered the expressions of inflammatory factors. AVI treatment significantly reduced the loss of tight junction proteins and apoptosis in both mouse intestinal epithelial cells and TNF‑α-stimulated Caco-2 cells. KEGG enrichment pathway analysis suggested that the therapeutic effect of AVI on CD was associated with inhibition of PI3K/AKT/NF-κB pathway activation, which was confirmed by lowered expressions of p-PI3K, p-AKT, and p-p65 in AVI-treated mouse models and Caco-2 cells. In Caco-2 cells, Recilisib significantly blocked the inhibitory effect of AVI on the PI3K/AKT/NF-κB pathway and TNF-α-induced apoptosis, and AKT1 knockdown experiment confirmed the role of the PI3K/AKT pathway for mediating the activation of downstream NF-κB signaling.
CONCLUSIONS
AVI can improve TNBS-induced CD-like colitis in mice by reducing intestinal epithelial cell apoptosis and intestinal barrier damage via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Saponins/therapeutic use*
;
Mice
;
Crohn Disease/metabolism*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Humans
;
Caco-2 Cells
;
Phosphatidylinositol 3-Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Epithelial Cells/drug effects*
;
Trinitrobenzenesulfonic Acid
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
6.Radix Panacis quinquefolii Extract Ameliorates Inflammatory Bowel Disease through Inhibiting Inflammation.
Xi-Xin WANG ; Hong-Yuan ZOU ; Yong-Na CAO ; Xuan-Ming ZHANG ; Meng SUN ; Peng-Fei TU ; Ke-Chun LIU ; Yun ZHANG
Chinese journal of integrative medicine 2023;29(9):825-831
OBJECTIVE:
To investigate the anti-inflammatory activity of Radix Panacis quinguefolii root extract (RPQE) and its therapeutic effects on inflammatory bowel disease (IBD).
METHODS:
The 72-hour post-fertilization zebrafish was used to generate the local and systematic inflammation models through tail-amputation and lipopolysaccharide (LPS)-induction (100 µ g/mL), respectively. The Tg(zlyz:EGFP) zebrafish was induced with 75 µ g/mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) for establishing the IBD model. The tail-amputated, LPS-, and TNBS-induced models were subjected to RPQE (ethanol fraction, 10-20 µ g/mL) administration for 12 and 24 h, respectively. Anti-inflammatory activity of RPQE was evaluated by detecting migration and aggregation of leukocytes and expression of inflammation-related genes. Meanwhile, TNBS-induced fish were immersed in 0.2% (W/V) calcein for 1.5 h and RPQE for 12 h before photographing to analyze the intestinal efflux efficiency (IEE). Moreover, the expression of inflammation-related genes in these fish was detected by quantitative polymerase chain reaction.
RESULTS:
Subject to RPQE administration, the migration and aggregation of leukocytes were significantly alleviated in 3 zebrafish models (P<0.01). Herein, RPQE ameliorated TNBS-induced IBD with respect to a significantly reduced number of leukocytes, improved IEE, and inhibited gene expression of pro-inflammatory factors (P<0.05 or P<0.01).
CONCLUSION
RPQE exhibited therapeutic effects on IBD by inhibiting inflammation.
Animals
;
Zebrafish
;
Lipopolysaccharides
;
Disease Models, Animal
;
Inflammatory Bowel Diseases/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Trinitrobenzenesulfonic Acid/adverse effects*
;
Colitis/drug therapy*
7.Ozonated oil alleviates dinitrochlorobenzene-induced allergic contact dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Zhibing FU ; Yajie XIE ; Liyue ZENG ; Lihua GAO ; Xiaochun YU ; Lina TAN ; Lu ZHOU ; Jinrong ZENG ; Jianyun LU
Journal of Central South University(Medical Sciences) 2023;48(1):1-14
OBJECTIVES:
Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.
METHODS:
Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.
RESULTS:
Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).
CONCLUSIONS
Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Animals
;
Mice
;
Dinitrochlorobenzene/metabolism*
;
Skin/metabolism*
;
Cytokines/metabolism*
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dermatitis, Allergic Contact/pathology*
;
Dermatitis, Atopic/chemically induced*
;
Signal Transduction
;
RNA, Messenger/metabolism*
;
Mice, Inbred BALB C
8.Deficiency in glutathione synthesis and reduction contributes to the pathogenesis of colitis-related liver injury.
Liangliang WANG ; Ruyue HAN ; Kaihong ZANG ; Pei YUAN ; Hongyan QIN
Journal of Central South University(Medical Sciences) 2022;47(3):271-279
OBJECTIVES:
Liver disease is the most common extra-intestinal manifestation of ulcerative colitis (UC), but the underlying pathogenesis is still not clarified. It is well accepted that the occurrence of UC-related liver disease has close correlation with immune activation, intestinal bacterial liver translocation, inflammatory cytokine storm, and the disturbance of bile acid circulation. The occurrence of UC-related liver disease makes the therapy difficult, therefor study on the pathogenesis of UC-related liver injury is of great significance for its prevention and treatment. Glutathione (GSH) shows multiple physiological activities, such as free radical scavenging, detoxification metabolism and immune defense. The synthesis and the oxidation-reduction all contribute to GSH antioxidant function. It is reported that the deficiency in hepatic GSH antioxidant function participates in multiple liver diseases, but whether it participates in the pathogenesis of UC-related liver injury is still not clear. This study aims to investigate the feature and underlying mechanism of GSH synthesis and oxidation-reduction function during the development of UC, which will provide useful information for the pathogenesis study on UC-related liver injury.
METHODS:
UC model was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-ethanol solution (5 mg/0.8 mL per rat, 50% ethanol) via intra-colonic administration in rats, and the samples of serum, liver, and colon tissue of rats were collected at the 3rd, 5th, and 7th days post TNBS. The severity degree of colitis was evaluated by measuring the disease activity index, colonic myeloperoxidase activity, and histopathological score, and the degree of liver injury was evaluated by histopathological score and the serum content of alanine aminotransferase. Spearman correlation analysis was also conducted between the degree of colonic lesions and index of hepatic histopathological score as well as serum aspartate aminotransferase level to clarify the correlation between liver injury and colitis. To evaluate the hepatic antioxidant function of GSH in UC rats, hepatic GSH content, enzyme activity of GSH peroxidase (GSH-Px), and GSH reductase (GR) were determined in rats at the 3rd, 5th, and 7th days post TNBS, and the protein expressions of glutamine cysteine ligase (GCL), GSH synthase, GSH-Px, and GR in the liver of UC rats were also examined by Western blotting.
RESULTS:
Compared with the control, the disease activity index, colonic myeloperoxidase activity, and histopathological score were all significantly increased at the 3rd, 5th, and 7th days post TNBS (all P<0.01), the serum aspartate aminotransferase level and hepatic histopathologic score were also obviously elevated at the 7th day post TNBS (all P<0.05). There was a significant positive correlation between the degree of liver injury and the severity of colonic lesions (P=0.000 1). Moreover, compared with the control, hepatic GSH content and the activity of GSH-Px and GR were all significantly decreased at the 3rd and 5th days post TNBS (P<0.05 or P<0.01), and the protein expressions of GCL, GSH-Px, and GR were all obviously down-regulated at the 3rd, 5th, and 7th days post TNBS (P<0.05 or P<0.01).
CONCLUSIONS
There is a significant positive correlation between the degree of liver injury and the severity of colonic lesions, and the occurrence of reduced hepatic GSH synthesis and decreased GSH reduction function is obviously earlier than that of the liver injury in UC rats. The reduced hepatic expression of enzymes that responsible for GSH synthesis and reduction may contribute to the deficiency of GSH synthesis and oxidation-reduction function, indicating that the deficiency in GSH antioxidant function may participate in the pathogenesis of UC related liver injury.
Animals
;
Antioxidants
;
Aspartate Aminotransferases
;
Colitis/chemically induced*
;
Colitis, Ulcerative/metabolism*
;
Colon/pathology*
;
Glutathione/biosynthesis*
;
Liver/metabolism*
;
Peroxidase/metabolism*
;
Rats
;
Trinitrobenzenesulfonic Acid
9.Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats.
Dan REN ; Jia-Ni LI ; Xin-Tong QIU ; Fa-Ping WAN ; Zhen-Yu WU ; Bo-Yuan FAN ; Ming-Ming ZHANG ; Tao CHEN ; Hui LI ; Yang BAI ; Yun-Qing LI
Neuroscience Bulletin 2022;38(4):342-358
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Animals
;
Anxiety/etiology*
;
Chronic Pain/etiology*
;
GABAergic Neurons
;
Gyrus Cinguli/metabolism*
;
Hyperalgesia/metabolism*
;
Pancreatitis, Chronic/pathology*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Trinitrobenzenesulfonic Acid/toxicity*
10.Oral Cadmium Intake Enhances Contact Allergen-induced Skin Reaction in Rats.
Dina TUCOVIC ; Jelena KULAS ; Ivana MIRKOV ; Dusanka POPOVIC ; Lidija ZOLOTAREVSKI ; Marta DESPOTOVIC ; Milena KATARANOVSKI ; Popov Aleksandrov ALEKSANDRA
Biomedical and Environmental Sciences 2022;35(11):1038-1050
OBJECTIVE:
The effect of oral cadmium (Cd) intake to influence contact skin allergies was examined, since it is known that Cd is a heavy metal that affects many tissues, including the skin, in which it disturbs homeostasis, thus resulting in inflammation and injury.
METHODS:
Male rats were evoked with experimental contact hypersensitivity reaction (CHS) to hapten dinitrochlorobenzene (DNCB), after prolonged (30 day) oral exposure to an environmentally relevant Cd dose (5 ppm). The ear cell population was analyzed with flow cytometry. Cytokine production by ear skin cells and the activity of skin-draining lymph node (DLN) cells were measured using enzyme-linked immunosorbent assay (ELISA).
RESULTS:
Orally acquired Cd (5 ppm) increased CHS intensity only in Dark Agouti (DA) rats by affecting inflammatory responses in both the sensitization (an increase of IFN-γ and IL-17 cytokine production) and challenge (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production) phases. An increased CHS reaction was seen in Albino Oxford (AO) rats only at a high Cd dose (50 ppm), during the challenge phase (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production).
CONCLUSION
These novel data indicate that oral Cd intensifies the skin response to sensitizing chemicals such as DNCB.
Male
;
Rats
;
Animals
;
Allergens/toxicity*
;
Cadmium/toxicity*
;
Dinitrochlorobenzene/toxicity*
;
Interleukin-17
;
Cytokines

Result Analysis
Print
Save
E-mail