1.Mechanism of Zhifuxin in prevention and treatment of vascular dementia in long-term hypoperfused rats.
Xiao-Qing LI ; Xue ZHOU ; Jiu-Qun ZHU ; Zheng-Huai TAN
China Journal of Chinese Materia Medica 2025;50(7):1900-1907
This paper aims to evaluate the pharmacodynamic effect and mechanism of Zhifuxin in the prevention and treatment of vascular dementia(VD), providing a theoretical basis for later development. Bilateral common carotid artery ligation in male Wistar rats was conducted to replicate the long-term hypoperfused VD model, and the drug was given to groups after one month. The rats were fed daily with nimodipine of 20 mg·kg~(-1), Zhifuxin of 50, 100, and 200 mg·kg~(-1), or the same volume of solvent for four weeks. 24 hours after the last dose, Morris water maze experiments were performed to detect the learning and memory abilities of rats. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the brain tissue of rats; the immunohistochemical method was used to detect the expression of muscarinic acetylcholine receptors M1 and M4 in rats and determine the content of acetyl choline(Ach), acetylcholin esterase(AchE), malondialdehyde(MDA), choline acetyl transferase(ChAT), and dimethyl arginine hydrolase 1(DDAH1) in the cerebral cortex of rats. Western blot was employed to detect protein expression of endothelial nitric oxide synthase(eNOS), caveolin-1, monoamine oxidase A(MAO-A), and monoamine oxidase B(MAO-B). RT-qPCR was utilized to detect mRNA expression of eNOS, caveolin-1, MAO-A, and MAO-B. The results showed that compared with the model group, the different doses of Zhifuxin were able to shorten the latency of VD rats in the water maze positioning navigation test, increase the number of crossing platforms in the space exploration test, and alleviate cone cell contracture in the hippocampus of VD rats. The expression of biochemical indicators related to the cholinergic system in the cerebral cortex: M1 and M4 receptors increased, as well as ChAT activity, and AchE activity significantly decreased. The protein and mRNA expression of indicators related to the eNOS/NO pathway: DDAH1 content, eNOS, and caveolin-1 increased, and that of indicators related to monoamine oxidase(MAO): MAO-A and MAO-B significantly decreased. The results show that Zhifuxin can improve cognition ability in long-term hypoperfused VD rats, and its mechanism of action may be related to its ability to modulate the cholinergic system and the eNOS/NO pathway and inhibit MAO expression.
Animals
;
Dementia, Vascular/metabolism*
;
Male
;
Rats, Wistar
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
;
Nitric Oxide Synthase Type III/genetics*
;
Acetylcholinesterase/metabolism*
;
Humans
;
Choline O-Acetyltransferase/genetics*
;
Disease Models, Animal
2.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*
3.Visual-spatial neglect after right-hemisphere stroke: behavioral and electrophysiological evidence.
Lin-Lin YE ; Lei CAO ; Huan-Xin XIE ; Gui-Xiang SHAN ; Yan-Ming ZHANG ; Wei-Qun SONG
Chinese Medical Journal 2019;132(9):1063-1070
BACKGROUND:
Visual-spatial neglect (VSN) is a neuropsychological syndrome, and right-hemisphere stroke is the most common cause. The pathogenetic mechanism of VSN remains unclear. This study aimed to investigate the behavioral and event-related potential (ERP) changes in patients with or without VSN after right-hemisphere stroke.
METHODS:
Eleven patients with VSN with right-hemisphere stroke (VSN group) and 11 patients with non-VSN with right-hemisphere stroke (non-VSN group) were recruited along with one control group of 11 age- and gender-matched healthy participants. The visual-spatial function was evaluated using behavioral tests, and ERP examinations were performed.
RESULTS:
The response times in the VSN and non-VSN groups were both prolonged compared with those of normal controls (P < 0.001). In response to either valid or invalid cues in the left side, the accuracy in the VSN group was lower than that in the non-VSN group (P < 0.001), and the accuracy in the non-VSN group was lower than that in controls (P < 0.05). The P1 latency in the VSN group was significantly longer than that in the control group (F[2, 30] = 5.494, P = 0.009), and the N1 amplitude in the VSN group was significantly lower than that in the control group (F[2, 30] = 4.343, P = 0.022). When responding to right targets, the left-hemisphere P300 amplitude in the VSN group was significantly lower than that in the control group (F[2, 30] = 4.255, P = 0.025). With either left or right stimuli, the bilateral-hemisphere P300 latencies in the VSN and non-VSN groups were both significantly prolonged (all P < 0.05), while the P300 latency did not differ significantly between the VSN and non-VSN groups (all P > 0.05).
CONCLUSIONS
Visual-spatial attention function is impaired after right-hemisphere stroke, and clinicians should be aware of the subclinical VSN. Our findings provide neuroelectrophysiological evidence for the lateralization of VSN.
Adult
;
Aged
;
Cerebral Infarction
;
physiopathology
;
Electrophysiology
;
Female
;
Humans
;
Male
;
Middle Aged
;
Neuropsychological Tests
;
Nitric Oxide Synthase Type III
;
genetics
;
PPAR gamma
;
genetics
;
Perceptual Disorders
;
genetics
;
metabolism
;
physiopathology
;
Polymorphism, Genetic
;
genetics
;
Reaction Time
;
genetics
;
physiology
;
Reactive Oxygen Species
;
metabolism
;
Stroke
;
genetics
;
metabolism
;
physiopathology
;
Superoxide Dismutase
;
genetics
4.Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
Na HE ; Qi-Hai GONG ; Feng ZHANG ; Jing-Yi ZHANG ; Shu-Xian LIN ; Hua-Hua HOU ; Qin WU ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(5):359-365
OBJECTIVETo investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms.
METHODSCardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca]) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis.
RESULTSCompared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca]) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca] concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05).
CONCLUSIONEvo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Angiotensin II ; Animals ; Atrial Natriuretic Factor ; metabolism ; Calcineurin ; genetics ; metabolism ; Calcium ; metabolism ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Hypertrophy ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Quinazolines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
5.Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.
Yue-Hua JIANG ; Jin-Hao GUO ; Sai WU ; Chuan-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):606-614
Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg·d) for 6 weeks, using valsartan (13.5 mg·kg·d) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 mol·L Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65.
Angiotensin II
;
metabolism
;
Animals
;
Antihypertensive Agents
;
administration & dosage
;
Apoptosis
;
drug effects
;
Blood Pressure
;
drug effects
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypertension
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Male
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
administration & dosage
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Reactive Oxygen Species
;
metabolism
;
Tribulus
;
chemistry
6.Lentiviral vectors carrying siRNA inhibit S1PR3 gene expression in the corpus cavernosum smooth muscle cells of rats with spontaneous hypertension.
Bang-Cai WU ; Ji-Yi XIA ; Rui JIANG ; Hai-Fan YANG
National Journal of Andrology 2017;23(2):110-119
Objective:
To screen lentiviral vectors carrying siRNA which can specifically down-regulate the gene expression of the sphingosine-1-phosphate receptor 3 (S1PR3) in the corpus cavernosum smooth muscle (CCSM) cells of rats with spontaneous hypertension (SHT) and investigate the influence of the vectors on the signaling pathways of ROCK1, ROCK2 and eNOS in the CCSM cells of SHT rats.
METHODS:
Using the S1PR3 mRNA sequence of the rat as an interfering target, we designed and synthesized three pairs of siRNA sequences (siRNA1, 2 and 3) targeting S1PR3 and one pair of negative control, and then constructed and packaged them into lentiviral vectors. We cultured the CCSM cells of SHT and Wistar-Kyoto (WKY) rats in vitro and randomly divided them into groups A (SHT untransfected control), B (SHT transfected and carrying negative control virus), C (SHT transfected and carrying siRNA1 targeting S1PR3), D (SHT transfected and carrying siRNA2 targeting S1PR3), E (SHT transfected and carrying siRNA3 targeting S1PR3), and F (WKY untransfected control). With the multiplicity of infection (MOI) = 60, we transfected the CCSM cells of the SHT rats with the lentiviral vector and then determined the expression of the green fluorescent protein (GFP) as well as the mRNA and protein expressions of S1PR3, ROCK1, ROCK2 and eNOS in the CCSM cells of the SHT and WKY rats by RT-PCR and Western blot.
RESULTS:
Gene sequencing proved the successful construction of the lentiviral vector. The transfection efficiency of the CCSM cells of the rats was >80% in groups B, C, D and E. Compared with group A, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 exhibited no significant difference in group B but were remarkably decreased in groups C, D, E and F (P< 0.05), most significantly in group E, with the inhibition rates of the mRNA and protein expressions of S1PR3 of (34.2±2.9) and (77.7±4.7)%, those of ROCK1 of (33.3±1.4) and (51.1±7.3)%, and those of ROCK2 of (30.8±3.6) and (58.32±5.5)%, respectively. The mRNA and protein expressions of eNOS in group A showed no significant difference from those in groups B, C, D and E (P>0.05) but remarkably lower than those in group F (P< 0.05). Compared with group F, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 were not significantly different from those in group E (P>0.05) but markedly increased in groups A, B, C and D (P< 0.05), while those of eNOS remarkably decreased in groups A, B, C, D and E (P< 0.05).
CONCLUSIONS
The three constructed lentiviral vectors carrying siRNA targeting different loci of the S1PR3 gene could significantly inhibit the expression of S1P3 as well as RhoA/Rho kinase signaling pathways in the CCSM cells of SHT rats, and the vector carrying siRNA3 exhibited the highest inhibitory effect.
Animals
;
Down-Regulation
;
Gene Expression
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Lentivirus
;
genetics
;
Male
;
Myocytes, Smooth Muscle
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Penis
;
metabolism
;
RNA, Messenger
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Inbred WKY
;
Receptors, Lysosphingolipid
;
genetics
;
metabolism
;
Signal Transduction
;
Sphingosine-1-Phosphate Receptors
;
Transfection
;
rho-Associated Kinases
;
metabolism
7.Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases.
Ting SUN ; Qingjia CHI ; Guixue WANG
Journal of Biomedical Engineering 2016;33(1):188-192
Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases.
Animals
;
Cardiovascular Diseases
;
metabolism
;
pathology
;
Epigenesis, Genetic
;
Humans
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Polymorphism, Genetic
;
Vasodilation
8.CYP2C8-derived epoxyeicosatrienoic acids decrease oxidative stress-induced endothelial apoptosis in development of atherosclerosis: Role of Nrf2 activation.
Wan-jun LIU ; Tao WANG ; Bei WANG ; Xin-tian LIU ; Xing-wei HE ; Yu-jian LIU ; Zhu-xi LI ; Rong TAN ; He-song ZENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):640-645
The aim of the present study is to investigate how cytochrome P450 enzymes (CYP) 2C8-derived epoxyeicosatrienoic acids (EETs) regulate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and protect against oxidative stress-induced endothelial injuries in the development and progression of atherosclerosis. In this study, cultured human umbilical vein endothelial cells (HUVECs) were transfected with CYP2C8 or pretreated with exogenous EETs (1 μmol/L) before TNF-α (20 ng/mL) stimulation. Apoptosis and intracellular ROS production were determined by flow cytometry. The expression levels of ROS-associated NAD(P)H subunits gp91 and p47, the anti-oxidative enzyme catalase (CAT), Nrf2, heme oxygenase-1 (HO-1) and endothelial nitric oxide synthase (eNOS) were detected by Western blotting. The results showed that CYP2C8-derived EETs decreased apoptosis of HUVECs treated with TNF-α. Pretreatment with 11, 12-EET also significantly blocked TNF-α-induced ROS production. In addition, 11, 12-EET decreased oxidative stress-induced apoptosis. Furthermore, the ability of 11, 12-EET to protect cells against TNF-α-induced apoptosis via oxidative stress was abrogated by transient transfection with Nrf2-specific small interfering RNA (siRNA). In conclusion, CYP2C8-derived EETs prevented TNF-α-induced HUVECs apoptosis via inhibition of oxidative stress associated with the Nrf2 signaling.
8,11,14-Eicosatrienoic Acid
;
analogs & derivatives
;
metabolism
;
pharmacology
;
Adaptor Proteins, Signal Transducing
;
genetics
;
metabolism
;
Apoptosis
;
drug effects
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Atherosclerosis
;
genetics
;
metabolism
;
pathology
;
Catalase
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2C8
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Membrane Glycoproteins
;
genetics
;
metabolism
;
Models, Biological
;
NADPH Oxidase 2
;
NADPH Oxidases
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Tumor Necrosis Factor-alpha
;
metabolism
;
pharmacology
9.Kruppel-like factor 2 might mediate the rapamycin-induced arterial thrombosis in vivo: implications for stent thrombosis in patients.
Xiao-min NIE ; Li-xiao SU ; Rui-xia XU ; Yuan-lin GUO ; Yu-jie ZHOU ; Jian-jun LI
Chinese Medical Journal 2013;126(14):2636-2640
BACKGROUNDStent thrombosis is one of severe complications after sirolimus-eluting stent implantation. Rapamycin (sirolimus) promotes arterial thrombosis in in vivo studies. However, the underlying molecular and transcriptional mechanisms of this adverse effect have not been thoroughly investigated. This study was designed to examine the effects of rapamycin on the expression of the gene, Kruppel-like factor 2 (KLF2), and its transcriptional targets in mice.
METHODSMice were randomly divided into four groups: the control group (intraperitoneal injection with 2.5% of dimethyl sulfoxide (DMSO) only), rapamycin group (intraperitoneal injection with 2 mg/kg of rapamycin only), Ad-LacZ + rapamycin group (carotid arterial incubation with Ad-LacZ plus intraperitoneal injection with 2 mg/kg of rapamycin 10 days later), and Ad-KLF2 + rapamycin group (carotid arterial incubation with Ad-KLF2 plus intraperitoneal injection with 2 mg/kg rapamycin 10 days later). The carotid arterial thrombosis formation was induced by FeCl3 and the time of arterial thrombosis was determined. Finally, the RNA and protein of carotid arteries were extracted for KLF2, tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), endothelial nitric oxide synthase (eNOS), thrombomodulin (TM) mRNA and protein analysis.
RESULTSCompared with controls, treatment with rapamycin inhibited KLF2, eNOS and TM mRNA and protein expression, and enhanced TF and PAI-1 mRNA and protein expression, and shortened time to thrombotic occlusion from (1282 ± 347) seconds to (715 ± 120) seconds (P < 0.01) in vivo. Overexpression of KLF2 strongly reversed rapamycin-induced effects on KLF2, eNOS, TM, TF and PAI-1 expression. KLF2 overexpression increased the time to thrombotic occlusion to control levels in vivo.
CONCLUSIONSRapamycin induced an inhibition of KLF2 expression and an imbalance of anti- and pro-thrombotic gene expression, which promoted arterial thrombosis in vivo. Overexpression of KLF2 increased KLF2 expression and reversed time to thrombosis in vivo.
Animals ; Carotid Arteries ; metabolism ; Drug-Eluting Stents ; adverse effects ; Kruppel-Like Transcription Factors ; analysis ; genetics ; physiology ; Mice ; Mice, Inbred C57BL ; Nitric Oxide Synthase Type III ; physiology ; Plasminogen Activator Inhibitor 1 ; physiology ; Sirolimus ; pharmacology ; Thrombomodulin ; physiology ; Thrombosis ; chemically induced
10.Expression of endothelial nitric oxide synthase mRNA in human RBCs during storage.
Xue CHEN ; Chang-Hua ZHOU ; Ying HONG ; Tian-Xiang GONG
Journal of Experimental Hematology 2013;21(2):481-483
This study was purposed to identify endothelial nitric oxide synthase (eNOS) mRNA in human RBCs during storage and to investigate the relationship of its changing profile and preservation time at 4°C. RT-PCR and gene sequencing were applied to identify eNOS-mRNA in banked RBC. Real time PCR was used to study the relationship of eNOS-mRNA expression and preservation time. The results showed that eNOS mRNA was detected in RBC. Compared with fresh RBC, the content of eNOS mRNA in RBC was 0.868 ± 0.119 stored for 1 week, which was 0.379 ± 0.289, 0.108 ± 0.134, 0.141 ± 0.141, 0.125 ± 0.12 stored for 2, 3, 4 and 5 weeks respectively. It is concluded that eNOS mRNA exists in human RBC and its content is decreasing gradually along with the prolongation of storage time in banked RBC. Stored for 3 weeks, the content of eNOS-mRNA remains to be at lower level of concentration in human RBC.
Blood Donors
;
Blood Preservation
;
Erythrocytes
;
metabolism
;
Humans
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail