1.Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro.
Qian-Yu CHEN ; Chao-Qun WANG ; Zhi-Wei YANG ; Qi TANG ; Huan-Ran TAN ; Xuan WANG ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):515-524
Scutellariae Radix (SR), the root of Scutellaria baicalensis Georgi, is used as an antipyretic drug and has been demonstrated to have anti-inflammatory activity. SR is divided into two specifications, "Ku Qin" (KQ) and "Zi Qin" (ZQ), for use against different symptoms (upper energizer heat or lower portion of the triple energizer), according to the theory of traditional Chinese medicine (TCM). However, differences in the efficacies of these two specifications have not been determined. In the present study, we aimed to characterize the differences in the anti-inflammatory activities between KQ and ZQ and to explore how their differences are manifested in lipopolysaccharide (LPS)-induced macrophages. Our results showed that, in RAW264.7 cells (a mouse macrophage cell line derived from ascites), KQ and ZQ displayed anti-inflammatory effects by inhibiting the release of nitric oxide (NO), inducible NOS (iNOS), and nuclear factor-κB (NF-κB) in a dose-dependent manner without distinction. In NR8383 cells (a rat alveolar macrophage cell line), KQ and ZQ displayed similar effects on NO, iNOS, and NF-κB as seen in RAW264.7 cells, but KQ showed a higher inhibition rate for NO and iNOS than that shown by ZQ at the same concentration. These results indicated that there were differences in efficacy between KQ and ZQ in treating lung inflammation. Our findings provided an experimental evidence supporting the different uses of KQ and ZQ in clinic, as noted in ancient herbal records.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Nitric Oxide Synthase Type II
;
genetics
;
immunology
;
RAW 264.7 Cells
;
Rats
;
Scutellaria baicalensis
;
chemistry
2.Study on protective effect of total saponins of Panax japonicus on LPS-induced RAW264. 7 cell inflammation through NF-kappaB pathway.
Yan-Wen DAI ; Ding YUAN ; Jing-Zhi WAN ; Chang-Cheng ZHANG ; Chao-Qi LIU ; Ting WANG
China Journal of Chinese Materia Medica 2014;39(11):2076-2080
OBJECTIVETo observe the anti-inflammatory effect of total saponins of Panax japonicus on LPS-induced RAW264. 7 macrophages.
METHODThe effect of total saponins of P. japonicus of different concentrations on RAW264. 7 cell viability was determined with the MTT method. The NO kit assay was adopted to detect the NO release of total saponins of P. japonicus to LPS-induced RAW264. 7 cells. The enzyme linked immunosorbent assay (ELISA) was used to detect the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin 1-beta (IL-1beta). The reverse transeriptase-polymerase chain reaction (RT-PCR) was used to determine the expression of inducible nitric oxide synthase (iNOS) ,TNF-alpha,IL-1beta. The protein expression of nuclear transcription factor-kappaB p65 (NF-kappaB p65) was tested by Western blot.
RESULTThe safe medication range of total saponins of P. japonicus was less than 80 mg x L(-1). Compared with the LPS model group, total saponins of P. japonicus high, middle and low dose groups (0.1, 1, 10, 40 mg x L(-1)) could significantly reduce the secretion of NO, TNF-alpha, IL-1beta of LPS-induced RAW264. 7 cells, and inhibit the expressions of iNOS, TNF-alpha and IL-1beta mRNA and the protein expression of NF-kappaB p65.
CONCLUSIONThis study preliminarily proves the protective effect of total saponins of P. japonicus on LPS-induced RAW264.7 macrophages. Its action mechanism may be related to NF-kappaB signal pathway.
Animals ; Anti-Inflammatory Agents ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Inflammation ; drug therapy ; genetics ; immunology ; Interleukin-1beta ; genetics ; immunology ; Lipopolysaccharides ; adverse effects ; Macrophages ; drug effects ; immunology ; Mice ; NF-kappa B ; genetics ; immunology ; Nitric Oxide ; immunology ; Nitric Oxide Synthase Type II ; genetics ; immunology ; Panax ; chemistry ; Protective Agents ; pharmacology ; Saponins ; pharmacology
3.Hypertonic saline resuscitation contributes to early accumulation of circulating myeloid-derived suppressor cells in a rat model of hemorrhagic shock.
Yuan-Qiang LU ; Lin-Hui GU ; Qin ZHANG ; Jiu-Kun JIANG ; Han-Zhou MOU
Chinese Medical Journal 2013;126(7):1317-1322
BACKGROUNDHemorrhagic shock is usually associated with complicated immune and inflammatory responses, which are sometimes crucial for the prognosis. As regulators of the immune and inflammatory system; proliferation, migration, distribution and activation of myeloid-derived suppressor cells (MDSCs) are intimately linked to the inflammation cascade.
METHODSIn a model of severe hemorrhagic shock, thirty-five rats were randomly divided into control, sham, normal saline resuscitation (NS), hypertonic saline resuscitation (HTS), and hydroxyethyl starch resuscitation (HES), with seven in each group. MDSCs were analyzed by flow cytometric staining of CD11b/c(+)Gra(+) in peripheral blood mononuclear cells (PBMC), spleen cell suspensions, and bone marrow nucleated cells (BMNC). Simultaneously, the expressions of arginase-1 (ARG-1) and inducible nitric oxide synthase (iNOS) mRNA in MDSCs were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
RESULTSIn the early stage after hemorrhagic shock, fluid resuscitation and emergency treatment, the MDSCs in the PBMC of NS, HTS and HES groups markedly increased, and MDSCs in BMNC of these groups decreased accordingly, significantly different to the control group. In hemorrhagic shock rats infused with HTS at the early resuscitation stage, MDSCs in PBMC increased about 2 and 4 folds, and MDSCs in BMNC decreased about 1.3 and 1.6 folds, as compared to the sham group respectively, with statistically significant difference. Furthermore, compared to the NS and HES groups, the MDSCs in PBMC of HTS group increased 1.6 and 1.8 folds with statistically significant differences; the MDSCs decrease in BMNC was not significant. However, there was no statistically significant difference in MDSCs of spleen among the five groups. In addition, compared to the control, sham, NS and HES groups, the ARG-1 and iNOS mRNA of MDSCs in PBMC, spleen and BMNC in the HTS group had the highest level of expression, but no statistically significant differences were noted.
CONCLUSIONSIn this model of rat with severe and controlled hemorrhagic shock, small volume resuscitation with HTS contributes to dramatically early migration and redistribution of MDSCs from bone marrow to peripheral circulation, compared to resuscitation with NS or HES.
Animals ; Arginase ; genetics ; metabolism ; Blood Pressure ; physiology ; Disease Models, Animal ; Flow Cytometry ; Fluid Therapy ; methods ; Leukocytes, Mononuclear ; metabolism ; Male ; Nitric Oxide Synthase Type II ; metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Saline Solution, Hypertonic ; therapeutic use ; Shock, Hemorrhagic ; immunology ; metabolism ; therapy
4.A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells.
Dachuan HUANG ; Sylvia LIM ; Rong Yuan Ray CHUA ; Hong SHI ; Mah Lee NG ; Siew Heng WONG
Protein & Cell 2010;1(3):291-306
MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.
Alternative Splicing
;
Amino Acid Sequence
;
Animals
;
Base Sequence
;
CARD Signaling Adaptor Proteins
;
genetics
;
metabolism
;
Cell Line
;
Dendritic Cells
;
drug effects
;
immunology
;
metabolism
;
Humans
;
In Vitro Techniques
;
Lipopolysaccharides
;
pharmacology
;
Lymphocyte Activation
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
metabolism
;
Molecular Sequence Data
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Nuclear Proteins
;
genetics
;
metabolism
;
Protein Isoforms
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
T-Lymphocytes
;
immunology
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
5.A novel beta-glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide production in RAW264.7 macrophages.
Zhi Qiang CHANG ; Joong Su LEE ; Mi Hyun HWANG ; Joo Heon HONG ; Hee Kyoung JUNG ; Sam Pin LEE ; Seung Chun PARK
Journal of Veterinary Science 2009;10(2):165-167
The effect of extracellular beta-(1-->3), (1-->6)-glucan, produced by Paenibacillus polymyxa JB115, on nitric oxide (NO) production in RAW264.7 macrophages was investigated. beta-glucan induced the production of NO by RAW264.7 macrophages in a concentration- and time-dependent manner. Moreover, beta-glucan stimulation increased the mRNA expression of iNOS, COX-2 and IL-6 in RAW264.7 macrophages in a concentration-dependent manner.
Animals
;
Bacillus/*metabolism
;
Cell Line
;
Cyclooxygenase 2/biosynthesis/genetics
;
Interleukin-6/biosynthesis/genetics
;
Lipopolysaccharides/pharmacology
;
Macrophages/*drug effects/enzymology/immunology
;
Mice
;
Nitric Oxide/*biosynthesis/immunology
;
Nitric Oxide Synthase Type II/biosynthesis/genetics/metabolism
;
RNA, Messenger/biosynthesis/genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
beta-Glucans/metabolism/*pharmacology
6.Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells.
Ji Ae LEE ; Ha Yong SONG ; Sung Mi JU ; Su Jin LEE ; Hyung Joo KWON ; Won Sik EUM ; Sang Ho JANG ; Soo Young CHOI ; Jinseu PARK
Experimental & Molecular Medicine 2009;41(9):629-637
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-kappaB DNA binding activity, IkappaBalpha degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.
Animals
;
Cell Line
;
Cyclooxygenase 2/*genetics/metabolism
;
Cytokines/immunology
;
*Gene Expression Regulation
;
Lipopolysaccharides/immunology/metabolism
;
Mice
;
Mitogen-Activated Protein Kinase Kinases/metabolism
;
NF-kappa B/metabolism
;
Nitric Oxide/metabolism
;
Nitric Oxide Synthase Type II/*genetics/metabolism
;
Reactive Oxygen Species/metabolism
;
Superoxide Dismutase/*metabolism
7.Effect of sildenafil citrate on interleukin-1beta-induced nitric oxide synthesis and iNOS expression in SW982 cells.
Kyung Ok KIM ; Shin Young PARK ; Chang Woo HAN ; Hyun Kee CHUNG ; Dae Hyun RYU ; Joong Soo HAN
Experimental & Molecular Medicine 2008;40(3):286-293
The purpose of this study was to identify the effect of sildenafil citrate on IL-1 beta induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1 beta stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1 beta -induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1 beta treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1 beta -induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1 beta -induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines.
Anti-Inflammatory Agents/immunology/pharmacology
;
Cell Line, Tumor
;
Cyclic GMP/analogs & derivatives/immunology/metabolism
;
Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors/metabolism
;
Humans
;
Interleukin-1beta/*metabolism
;
Male
;
Nitric Oxide/*biosynthesis/genetics/immunology
;
Nitric Oxide Synthase Type II/*biosynthesis/genetics/immunology
;
Phosphodiesterase Inhibitors/immunology/*pharmacology
;
Piperazines/immunology/*pharmacology
;
Purines/immunology/pharmacology
;
Signal Transduction/drug effects/genetics/immunology
;
Sulfones/immunology/*pharmacology
;
Synovial Membrane/enzymology/immunology
8.Expression and significance of hypoxia-inducible factor 1alpha protein and microvessel density marked by CD105 in cervical carcinoma.
Yan ZHU ; Qi-chang YANG ; Hong-bin LIU ; Man-hua LIU ; Yi SHEN ; Xiao-juan ZHANG
Chinese Journal of Pathology 2008;37(4):264-265
Adult
;
Aged
;
Aged, 80 and over
;
Antigens, CD
;
immunology
;
Endoglin
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Microvessels
;
immunology
;
Middle Aged
;
Nitric Oxide Synthase Type II
;
metabolism
;
Receptors, Cell Surface
;
immunology
;
Uterine Cervical Neoplasms
;
genetics
;
metabolism
9.Colchicine-derived compound CT20126 promotes skin allograft survival by regulating the balance of Th1 and Th2 cytokine production.
Seon Jin LEE ; Seung NAMKOONG ; Kwon Soo HA ; Woo Dong NAM ; Young Guen KWON ; Hansoo LEE ; Eun Young YOON ; Dong Jo CHANG ; Soon Ok KIM ; Young Myeong KIM
Experimental & Molecular Medicine 2007;39(2):230-238
Colchicine has been shown to regulate the expression of inflammatory gene, but this compound possesses much weaker anti-inflammatory activity. In this study, we synthesized a new colchicine derivative CT20126 and examined its immunomodulatory property. CT20126 was found to have immunosuppressive effects by inhibiting lymphocyte proliferation without cytotoxicity and effectively inhibit the transcriptional expression of the inflammatory genes, iNOS, TNF-alpha, and IL-1beta, in macrophages stimulated by LPS. This effect was nearly comparable to that of cyclosporine A. This compound also significantly suppressed the production of nitric oxide and Th1-related pro-inflammatory cytokines, IL-1beta, TNF-alpha, and IL-2, with minimal suppression of Th2-related anti-inflammatory cytokines IL-4 and IL-10 in the sponge matrix allograft model. Moreover, administration of CT20126 prolonged the survival of allograft skins from BALB/c mice (H-2d) to the dorsum of C57BL/6 (H-2b) mice. The in vivo immune suppressive effects of CT20126 were similar to that of cyclosporine A. These results indicate that this compound may have potential therapeutic value for transplantation rejection and other inflammatory diseases.
Animals
;
Cell Line
;
Colchicine/*analogs & derivatives/chemistry/*pharmacology
;
Cytokines/*biosynthesis
;
Female
;
Gene Expression Regulation/drug effects
;
Graft Survival/*drug effects
;
Immunosuppression
;
Interleukin-1beta/genetics/metabolism
;
Lipopolysaccharides/pharmacology
;
Lymphocyte Culture Test, Mixed
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Nitric Oxide/biosynthesis
;
Nitric Oxide Synthase Type II/genetics/metabolism
;
Skin Transplantation/*immunology
;
Th1 Cells/*drug effects/immunology/metabolism
;
Th2 Cells/*drug effects/immunology/metabolism
;
Transplantation, Homologous
;
Tumor Necrosis Factor-alpha/genetics/metabolism
10.Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice.
Sandra R AFONSO-CARDOSO ; Flavio H RODRIGUES ; Marcio AB GOMES ; Adriano G SILVA ; Ademir ROCHA ; Aparecida HB GUIMARAES ; Ignes CANDELORO ; Silvio FAVORETO ; Marcelo S FERREIRA ; Maria A SOUZA
The Korean Journal of Parasitology 2007;45(4):255-266
The protective effect of the Synadenium carinatum latex lectin (ScLL), and the possibility of using it as an adjuvant in murine model of vaccination against American cutaneous leishmaniasis, were evaluated. BALB/c mice were immunized with the lectin ScLL (10, 50, 100 microgram/animal) separately or in association with the soluble Leishmania amazonensis antigen (SLA). After a challenge infection with 10(6) promastigotes, the injury progression was monitored weekly by measuring the footpad swelling for 10 weeks. ScLL appeared to be capable of conferring partial protection to the animals, being most evident when ScLL was used in concentrations of 50 and 100 microgram/animal. Also the parasite load in the interior of macrophages showed significant reduction (61.7%) when compared to the control group. With regard to the cellular response, ScLL 50 and 100 microgram/animal stimulated the delayed-type hypersensitivity (DTH) reaction significantly (P < 0.05) higher than SLA or SLA plus ScLL 10 weeks after the challenge infection. The detection of high levels of IgG2a and the expression of mRNA cytokines, such as IFN-gamma, IL-12, and TNF-alpha (Th1 profiles), corroborated the protective role of this lectin against cutaneous leishmaniasis. This is the first report of the ScLL effect on leishmaniasis and shows a promising role for ScLL to be explored in other experimental models for treatment of leishmaniasis.
*Adjuvants, Immunologic
;
Animals
;
Antibodies, Protozoan/immunology
;
Antibody Formation
;
Antigens, Protozoan/immunology
;
Cytokines/genetics/immunology
;
Euphorbiaceae/*chemistry
;
Hypersensitivity, Delayed/immunology
;
Immunization
;
Immunoglobulin G/immunology
;
Latex/chemistry
;
Leishmania/immunology
;
Leishmaniasis, Cutaneous/*immunology/pathology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide Synthase Type II/genetics/immunology
;
Plant Lectins/*immunology/isolation & purification
;
Protozoan Vaccines/immunology/pharmacology
;
Skin/pathology

Result Analysis
Print
Save
E-mail