1.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
Animals
;
Cell Cycle
;
immunology
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Fungal Polysaccharides
;
pharmacology
;
Immunity
;
drug effects
;
Interferon-gamma
;
biosynthesis
;
metabolism
;
Interleukin-6
;
biosynthesis
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mice
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Pleurotus
;
RNA, Messenger
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tumor Necrosis Factor-alpha
;
biosynthesis
;
metabolism
;
Up-Regulation
2.Effect of triptolide on iNOS and SP expressions in spinal dorsal horn and dorsal root ganglion of rats with adjuvant arthritis.
Wei CHEN ; Xu-Dong ZHANG ; Zhuo-Hui LU ; Deng-Ming WEI
China Journal of Chinese Materia Medica 2014;39(9):1675-1679
OBJECTIVETo observe the analgesic effect of triptolide (TP) of high, middle and low doses on rats with adjuvant arthritis (AA), and the expressions of inducible nitric oxide synthase (iNOS) and substance P (SP) in spinal dorsal horn and dorsal root ganglion (DRG) of corresponding sections, in order to discuss the possible mechanism for the analgesic effect of TP on rats with adjuvant arthritis.
METHODFifty SD rats were selected and randomly divided into the normal group (group A), the model group (group B), and TP low (group C), middle (group D), high (group E) dose groups. Except for the group A, all of the remaining groups were injected with 0.1 mL of Freund's complete adjuvant through their right rear toes to establish the model. At 14 d after the model establishment, rats in C, D and E groups were intraperitoneally injected with different doses of TP (0.1 mg x kg(-1) for the group C, 0.2 mg x kg(-1) for the group D, 0.4 mg x kg(-1) for the group E) once a day for 9 days. Then the 50% mechanical withdraw threshold (MWT) was determined. And the expressions of iNOS and SP in lumbar5 (L5) spinal dorsal horn and DRG were detected with the immunohistochemical method.
RESULTThe 50% MWT of rats in the group B was significantly lower than that of the group A (P < 0.01). After being treated with TP, the Thermal withdrawal latencies of groups C, D and E were significantly higher than that of the group B (P < 0.01). TP could notably increase the MWT of AA rats, with a certain dose-effect relationship. The immunohistochemical results indicated that the iNOS and SP expressions significantly increased in the group B (P < 0.01), while the positive expression levels of iNOS and SP in groups C, D and E were significantly lower than that of the group B (P < 0.01), with a certain dose-effect relationship.
CONCLUSIONTP shows a good analgesic effect on AA, and could inhibit the iNOS and SP expressions in spinal dorsal horn and DRG in rats with adjuvant arthritis, which may be one of action mechanisms for the analgesic effect of TP.
Animals ; Anti-Inflammatory Agents, Non-Steroidal ; pharmacology ; Arthritis, Experimental ; drug therapy ; metabolism ; physiopathology ; Diterpenes ; pharmacology ; Dose-Response Relationship, Drug ; Epoxy Compounds ; pharmacology ; Female ; Ganglia, Spinal ; drug effects ; metabolism ; Immunohistochemistry ; Male ; Nitric Oxide Synthase Type II ; biosynthesis ; Pain Measurement ; methods ; Phenanthrenes ; pharmacology ; Phytotherapy ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spinal Cord ; drug effects ; metabolism ; Substance P ; biosynthesis ; Time Factors ; Treatment Outcome ; Tripterygium ; chemistry
3.Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS.
Jiong ZHANG ; Jun-hua LI ; Le WANG ; Min HAN ; Fang XIAO ; Xiao-qin LAN ; Yue-qiang LI ; Gang XU ; Ying YAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):516-520
The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.
Animals
;
Dexamethasone
;
pharmacology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Glucocorticoids
;
pharmacology
;
Male
;
Mice
;
Nitric Oxide Synthase Type II
;
biosynthesis
;
Nitric Oxide Synthase Type III
;
biosynthesis
;
Receptors, Glucocorticoid
;
agonists
;
Reperfusion Injury
;
enzymology
;
pathology
;
Up-Regulation
;
drug effects
4.Divergent immunomodulatory effects of extracts and phenolic compounds from the fern Osmunda japonica Thunb.
Xiao-xin ZHU ; Yu-jie LI ; Lan YANG ; Dong ZHANG ; Ying CHEN ; Eva KMONICKOVA ; Xiao-gang WENG ; Qing YANG ; Zdeněk ZÍDEK
Chinese journal of integrative medicine 2013;19(10):761-770
OBJECTIVETo study possible immunobiological potential of Osmunda japonica Thunb.
METHODSImmunomodulatory effects of ethanol extracts prepared from rhizomes of O. japonica and phenolic compounds isolated from the extracts were investigated under the in vitro conditions using the rat peritoneal cells (2×10(6)/mL; 24 h culture). Biosynthesis of nitric oxide (NO) was assayed by Griess reagent, production of prostaglandin E2 (PGE2) and secretion of cytokines were determined by enzyme-linked immunoabsorbent assay.
RESULTSThe extracts activated dose dependently, with the onset at 2.5-5 μmol/L concentrations, the high output NO production, and secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Mild enhancement of NO was produced by the aldehyde-type phenolics 4-hydroxybenzaldehyde and 3,4-hydroxybenzaldehyde. In contrasts, the acetone-type phenolics 4-hydroxybenzalacetone and 3,4-hydroxybenzalacetone inhibited production of immune mediators including cytokines (TNF-α, IL-1β, IL-6), NO, and PGE2. The 3,4-hydroxybenzalacetone was more effective than 4-hydroxybenzaldehyde. The IC50s estimates ranged within the interval of 5-10 μmol/L. No signs of cytotoxicity were observed up to the 50 μmol/L concentration of the compounds.
CONCLUSIONPhenolic compounds contained in medicinal herb Osmunda japonica possess distinct immunomodulatory activity.
Animals ; Cell Survival ; drug effects ; Cells, Cultured ; Dinoprostone ; biosynthesis ; Female ; Ferns ; chemistry ; Immunologic Factors ; pharmacology ; Interferon-gamma ; pharmacology ; Lipopolysaccharides ; pharmacology ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Peritoneum ; cytology ; drug effects ; Phenols ; chemistry ; isolation & purification ; pharmacology ; Plant Extracts ; chemistry ; isolation & purification ; pharmacology ; Polymyxin B ; pharmacology ; Proline ; analogs & derivatives ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Thiocarbamates ; pharmacology
5.Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7).
Rajendra KARKI ; E-mail: mokpou@yahoo.co.kr, DBKIM@MOKPO.AC.KR. ; Cheol-Ho PARK ; Dong-Wook KIM
Journal of Integrative Medicine 2013;11(4):246-252
OBJECTIVEBuckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs. The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators.
METHODSThe anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)- and nitric oxide (NO)-scavenging activities, serum peroxidation and chelating assays. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin. NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis. Also, the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay.
RESULTSInhibitory concentration 50 values for DPPH- and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively. BWE inhibited serum oxidation and possessed chelating activity. Furthermore, BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells. Also, BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation.
CONCLUSIONBuckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems. Thus, buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.
Animals ; Cells, Cultured ; Cyclooxygenase 2 ; analysis ; Fagopyrum ; Free Radical Scavengers ; pharmacology ; Inflammation Mediators ; antagonists & inhibitors ; Interleukin-6 ; biosynthesis ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; metabolism ; Mice ; NF-kappa B ; metabolism ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; analysis ; Plant Extracts ; pharmacology ; Tumor Necrosis Factor-alpha ; biosynthesis
6.Mitochondrial dysfunction and activation of iNOS are responsible for the palmitate-induced decrease in adiponectin synthesis in 3T3L1 adipocytes.
Min Jae JEON ; Jaechan LEEM ; Myoung Seok KO ; Jung Eun JANG ; Hye Sun PARK ; Hyun Sik KIM ; Mina KIM ; Eun Hee KIM ; Hyun Ju YOO ; Chul Ho LEE ; In Sun PARK ; Ki Up LEE ; Eun Hee KOH
Experimental & Molecular Medicine 2012;44(9):562-570
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are considered the key determinants of insulin resistance. Impaired mitochondrial function in obese animals was shown to induce the ER stress response, resulting in reduced adiponectin synthesis in adipocytes. The expression of inducible nitric oxide synthase (iNOS) is increased in adipose tissues in genetic and dietary models of obesity. In this study, we examined whether activation of iNOS is responsible for palmitate-induced mitochondrial dysfunction, ER stress, and decreased adiponectin synthesis in 3T3L1 adipocytes. As expected, palmitate increased the expression levels of iNOS and ER stress response markers, and decreased mitochondrial contents. Treatment with iNOS inhibitor increased adiponectin synthesis and reversed the palmitate-induced ER stress response. However, the iNOS inhibitor did not affect the palmitate-induced decrease in mitochondrial contents. Chemicals that inhibit mitochondrial function increased iNOS expression and the ER stress response, whereas measures that increase mitochondrial biogenesis (rosiglitazone and adenoviral overexpression of nuclear respiratory factor-1) reversed them. Inhibition of mitochondrial biogenesis prevented the rosiglitazone-induced decrease in iNOS expression and increase in adiponectin synthesis. These results suggest that palmitate-induced mitochondrial dysfunction is the primary event that leads to iNOS induction, ER stress, and decreased adiponectin synthesis in cultured adipocytes.
3T3-L1 Cells
;
*Adipocytes/drug effects/metabolism
;
Adiponectin/biosynthesis
;
Adipose Tissue/metabolism
;
Animals
;
Endoplasmic Reticulum Stress/drug effects
;
Insulin Resistance/genetics
;
Mice
;
Mitochondria/drug effects/*metabolism/pathology
;
Mitochondrial Turnover/drug effects/genetics
;
*Nitric Oxide Synthase Type II/genetics/metabolism
;
Nuclear Respiratory Factor 1
;
Obesity/genetics/metabolism
;
Palmitic Acid/pharmacology
;
Thiazolidinediones/pharmacology
7.1400W blocks death pathway of LPS-induced activated-microglia to preOLs.
Ya-Fang HE ; Hui-Jin CHEN ; Long-Hua QIAN ; Guan-Yi CHEN
Chinese Journal of Contemporary Pediatrics 2010;12(5):357-362
OBJECTIVETo explore the efficacy of inductible nitric oxide synthase (iNOS) inhibitor 1400W in vivo in blocking the death pathway of lipopolysaccharide (LPS)-induced activated-microglia to preoligodendrocytes (preOLs) in neonatal rats with infective-type periventricular leukomalacia (PVL) induced by LPS.
METHODSTwo-day-old neonatal rats were randomly divided into: a sham-operated group, an untreated PVL group, and four 1400W-treated PVL groups that were subcutaneously administrated with 20 mg/kg of 1400W at 0 h, 8 hrs, 16 hrs, and 24 hrs after LPS induction, respectively. The brain specimens were obtained 5 days after LPS induction. The pathological assessment of cerebral white matter was performed under a light microscope. Concentrations of nitric oxide (NO) were measured by nitric acid-deoxidize colorimetry. Synthesis of iNOS was determined by Western blot analysis. Peroxynitrite (ONOO(-)) level and the amount of preOLs were determined by immunocytochemistry. RETHODS: The obvious injuries of periventricular white matter, massive loss of positive O4-labelled preOLs, and increased levels of NO, ONOO(-) and iNOS were observed in neonatal rats with PVL. Compared to the untreated PVL group, the use of 1400W at 0 h, 8 hrs and 16 hrs after LPS induction significantly improved white matter injuries, reduced the levels of NO, ONOO(-) and iNOS, and increased the amount of O4-labelled preOLs. However, the use of 1400W at 24 hrs after LPS induction did not result in the improvements.
CONCLUSIONSiNOS inhibitor 1400W can effectively block the toxicity of LPS-activated microglia to preOLs and protect cerebral white matter through inhibiting iNOS and reducing the production of NO and ONOO(-). The use of 1400W within 16 hrs after LPS induction may provide cerebral protections in neonatal rats with PVL.
Amidines ; pharmacology ; Animals ; Apoptosis ; drug effects ; Benzylamines ; pharmacology ; Brain ; drug effects ; pathology ; Enzyme Inhibitors ; pharmacology ; Lipopolysaccharides ; toxicity ; Microglia ; cytology ; drug effects ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; antagonists & inhibitors ; Oligodendroglia ; cytology ; Peroxynitrous Acid ; biosynthesis ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; cytology
8.A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells.
Dachuan HUANG ; Sylvia LIM ; Rong Yuan Ray CHUA ; Hong SHI ; Mah Lee NG ; Siew Heng WONG
Protein & Cell 2010;1(3):291-306
MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.
Alternative Splicing
;
Amino Acid Sequence
;
Animals
;
Base Sequence
;
CARD Signaling Adaptor Proteins
;
genetics
;
metabolism
;
Cell Line
;
Dendritic Cells
;
drug effects
;
immunology
;
metabolism
;
Humans
;
In Vitro Techniques
;
Lipopolysaccharides
;
pharmacology
;
Lymphocyte Activation
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
metabolism
;
Molecular Sequence Data
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Nuclear Proteins
;
genetics
;
metabolism
;
Protein Isoforms
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
T-Lymphocytes
;
immunology
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
9.Effect of cardiomyopeptidin for injection on energy metabolism in isolated hearts of young rats after ischemia-reperfusion injury.
Liping YANG ; Liangwan CHEN ; Guican ZHANG ; Xiaoying LIU ; Daozhong CHEN ; Yi DONG
Journal of Central South University(Medical Sciences) 2010;35(6):598-606
OBJECTIVE:
To investigate the effect of cardiomyopeptidin for injection on energy metabolism in isolated hearts of young rats after ischemia-reperfusion injury.
METHODS:
Fifty young healthy SD rats(aged 20 +/- 3 days and weighing 50-70 g) were randomly divided into 5 groups: a normal control group (NC group, n = 10 ): the isolated hearts were stable for 20 min, and then 150 min continuous perfusion; a normal + cardiomyopeptidin group (NCMP group, n = 10): the same as the normal control group, but K-H buffer solution was added with 50 mg/L cardiomyopeptidin, and 3 ischemia-reperfusion injury model groups, including a model control group (n = 10): the isolated rat hearts were perfused with K-H buffer and then arrested with cardioplegic solution; a CMP1 group (n = 10): the ST.Thomas'II cardioplegic solution was added with 100 mg/L cardiomyopeptidin; CMP2 group (n=10): K-H buffer and ST.Thomas'II cardioplegic solution was added with 50 mg/L and 100 mg/L cardiomyopeptidin respectively. The cardiac functional indexes were monitored, including heart rate, myocardial contractility and diastolic function, peak systolic and diastole myocardial velocities and coronary flow. In the 3 ischemia-reperfusion injury model groups, myocardial ultrastructure was observed through transmission electron microscopy; the creatine kinase isoenzyme (CK-MB) concentration was measured in the fluid outflow of coronary; the content of Na+-K+ ATPase, Ca2+-Mg2+ ATPase, total ATPase, superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide(NO), total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS) and aldosereductase were measured in the myocardium tissue; the relative expression levels of iNOS, eNOS, and Akr1b4 mRNA in the myocardial tissue were also detected by real-time fluorescence quantitative PCR.
RESULTS:
In the NC group, after prolonged perfusion, the cardiac function of isolated hearts had no significant change. Cardiomyopeptidin for injection had no significant effect on normal isolated hearts. Compared with the model control group, the cardiac function indexes and coronary flow in the groups treated with cardiomyopeptidin decreased much less. Cardiac myofibrillar fragmentation and mitochondrial swelling were observed in the control group, while in the CMP groups, the myocardial structure was nearly complete, and only mild mitochondria swelling and degeneration could be seen. After the reperfusion, the content of CK-MB was increased in the control group. Compared with the model control group, the CK-MB content was lower in the CMP1 and CMP2 groups. There was a slight decline in the contents of Na+-K+ ATPase, Ca2+-Mg2+ ATPase, and Total ATPase in the CMP1 and CMP2 groups, and an increase in SOD activity (P < 0.01 or P < 0.05). The concentration of NO and MDA produced after the ischemia-reperfusion injury was much lower in the CMP1 and CMP2 groups. The activity of iNOS and aldosereductase was inhibited, the expression levels of iNOS, and Akr1b4 mRNA were significantly down-regulated in the CMP1 and CMP2 groups. These changes were more prominent in the CMP2 group (P < 0.01 or P < 0.05). The eNOS mRNA levels in the CMP2 group was up-regulated (P < 0.05).
CONCLUSION
Cardiomyopeptidin for injection may improve the energy metabolism, improve coronary blood flow and cardiac function after the reperfusion, thus protecting immature myocardial against ischemia-reperfusion injury in young rats. Administration of it in both K-H buffer and ST.Thomas'II cardioplegic solution is better than adding it in cardioplegic solution alone. The mechanism may be associated with the inhibition the mRNA expression of iNOS and Akr1b4 in cardiomyocytes, the inhibition activity of iNOS and aldosereductase, and the decrease of NO production.
Aldehyde Reductase
;
genetics
;
metabolism
;
Animals
;
Energy Metabolism
;
drug effects
;
Female
;
In Vitro Techniques
;
Male
;
Myocardial Reperfusion Injury
;
metabolism
;
Myocardium
;
metabolism
;
ultrastructure
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Peptides
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
10.A novel beta-glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide production in RAW264.7 macrophages.
Zhi Qiang CHANG ; Joong Su LEE ; Mi Hyun HWANG ; Joo Heon HONG ; Hee Kyoung JUNG ; Sam Pin LEE ; Seung Chun PARK
Journal of Veterinary Science 2009;10(2):165-167
The effect of extracellular beta-(1-->3), (1-->6)-glucan, produced by Paenibacillus polymyxa JB115, on nitric oxide (NO) production in RAW264.7 macrophages was investigated. beta-glucan induced the production of NO by RAW264.7 macrophages in a concentration- and time-dependent manner. Moreover, beta-glucan stimulation increased the mRNA expression of iNOS, COX-2 and IL-6 in RAW264.7 macrophages in a concentration-dependent manner.
Animals
;
Bacillus/*metabolism
;
Cell Line
;
Cyclooxygenase 2/biosynthesis/genetics
;
Interleukin-6/biosynthesis/genetics
;
Lipopolysaccharides/pharmacology
;
Macrophages/*drug effects/enzymology/immunology
;
Mice
;
Nitric Oxide/*biosynthesis/immunology
;
Nitric Oxide Synthase Type II/biosynthesis/genetics/metabolism
;
RNA, Messenger/biosynthesis/genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
beta-Glucans/metabolism/*pharmacology

Result Analysis
Print
Save
E-mail