1.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
2.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
3.Nuclear Factor-κB Signaling Mediates Antimony-induced Astrocyte Activation.
Tao ZHANG ; Yu Dan ZHENG ; Man JIAO ; Ye ZHI ; Shen Ya XU ; Piao Yu ZHU ; Xin Yuan ZHAO ; Qi Yun WU
Biomedical and Environmental Sciences 2021;34(1):29-39
Objective:
Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.
Methods:
Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).
Results:
Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation
Conclusion
Antimony activated astrocytes by activating the NF-κB signaling pathway.
Animals
;
Antimony/toxicity*
;
Astrocytes/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glial Fibrillary Acidic Protein/metabolism*
;
MAP Kinase Kinase Kinases
;
Male
;
Mice, Inbred ICR
;
NF-kappa B/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Rats
;
Signal Transduction/drug effects*
4.The protective effects of vitamin E on lung injury caused by high temperature and PM in COPD rats.
Jiang-Tao LIU ; Bin LUO ; Xiao-Tao HE ; Lan-Yu LI ; Sheng-Gang XU
Chinese Journal of Applied Physiology 2019;35(4):293-296
OBJECTIVE:
To investigate the effects of vitamin E on the respiratory function impairment in rats with chronic obstructive pulmonary disease (COPD) after exposed to high temperature and PM.
METHODS:
Fifty-four 7-week-old SPF male Wistar rats were randomly divided into 9 experimental groups (n=6). The rat COPD model was established by lipopolysaccharide (LPS) and smoke exposure. After modeled, the rats were tracheal instilled with PM (0 mg/ml, 3.2 mg/ml) and intraperitoneally injected with vitamin E at the dose of 40 mg/kg (20 mg/ml). Part of rats (high temperature groups) were then exposed to high temperature (40℃), once (8 h) a day for three consecutive days. After the last exposure, the lung function of rats was detected. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) were detected by corresponding ELISA kits.
RESULTS:
Compared with the control group, exposure of high temperature and PM could inhibit the lung function of COPD rats significantly (P<0.05); the level of MCP-1 was increased significantly in PM-exposure groups (P<0.05); iNOS was increased significantly in the groups of high temperature (P<0.05). Compared with the single-PM exposure groups, TNF-α in lung was decreased in the normal temperature health group and high temperature COPD group (P<0.05) after treated with vitamin E; MCP-1 was decreased in all vitamin E-treated groups (P<0.05); the decreased iNOS only appeared in the group of high temperature with vitamin E treatment.
CONCLUSION
High temperature and PM could aggravate the inflammation of COPD rats. As an antioxidant, vitamin E may protect the lung from the damage effects.
Animals
;
Chemokine CCL2
;
metabolism
;
Hot Temperature
;
adverse effects
;
Lung
;
physiopathology
;
Male
;
Nitric Oxide Synthase Type II
;
metabolism
;
Particulate Matter
;
adverse effects
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha
;
metabolism
;
Vitamin E
;
pharmacology
5.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
6.Two new ursane-type nortriterpenes from Lonicera macranthoides and their iNOS-inhibitory activities.
Yu-Dan MEI ; Nan ZHANG ; Wei-Yang ZHANG ; Jin-Shan TANG ; Hua ZHOU ; Yang YU ; Xin-Sheng YAO
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):27-32
The flower buds of Lonicera macranthoides (Shan Yin-Hua), represent an important traditional Chinese medicine and food ingredient. A phytochemical investigation of the 70% EtOH extract of the flower buds of L. macranthoides resulted in the isolation of 12 triterpenoids (1-12), including two new ursane-type nortriterpenes, 2α, 24-dihydroxy-23-nor-ursolic acid (1) and 2α, 4α-dihydroxy-23-nor-ursolic acid (2). Their structures were established by multiple spectroscopic methods and comparison with literature data. All isolated compounds were evaluated for their anti-inflammatory effects in LPS-activated RAW264.7 cells. Compounds 1 and 2 exhibited inhibitory effects on iNOS at the concentration of 30 μmol·L.
Animals
;
Anti-Inflammatory Agents
;
chemistry
;
pharmacology
;
Drugs, Chinese Herbal
;
chemistry
;
Enzyme Inhibitors
;
chemistry
;
pharmacology
;
Ethanol
;
chemistry
;
Flowers
;
chemistry
;
Lonicera
;
chemistry
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Molecular Structure
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type II
;
antagonists & inhibitors
;
Plant Extracts
;
chemistry
;
Plants, Edible
;
chemistry
;
RAW 264.7 Cells
;
Triterpenes
;
chemistry
;
pharmacology
7.Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
Na HE ; Qi-Hai GONG ; Feng ZHANG ; Jing-Yi ZHANG ; Shu-Xian LIN ; Hua-Hua HOU ; Qin WU ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(5):359-365
OBJECTIVETo investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms.
METHODSCardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca]) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis.
RESULTSCompared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca]) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca] concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05).
CONCLUSIONEvo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Angiotensin II ; Animals ; Atrial Natriuretic Factor ; metabolism ; Calcineurin ; genetics ; metabolism ; Calcium ; metabolism ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Hypertrophy ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Quinazolines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
8.Viperin Deficiency Promotes Polarization of Macrophages and Secretion of M1 and M2 Cytokines.
John EOM ; Jihye YOO ; Jeong Jin KIM ; Jae Bong LEE ; Wanho CHOI ; Chae Gyu PARK ; Jun Young SEO
Immune Network 2018;18(4):e32-
Viperin is a multifunctional protein that was first identified in human primary macrophages treated with interferon-γ and in human fibroblasts infected with human cytomegalovirus. This protein plays a role as an anti-viral protein and a regulator of cell signaling pathways or cellular metabolism when induced in a variety of cells such as fibroblasts, hepatocytes and immune cells including T cells and dendritic cells. However, the role of viperin in macrophages is unknown. Here, we show that viperin is basally expressed in murine bone marrow cells including monocytes. Its expression is maintained in bone marrow monocyte-derived macrophages (BMDMs) depending on macrophage colony-stimulating factor (M-CSF) treatment but not on granulocyte-macrophage colony-stimulating factor (GM-CSF) treatment. In wild type (WT) and viperin knockout (KO) BMDMs differentiated with M-CSF or G-MCSF, there are little differences at the gene expression levels of M1 and M2 macrophage markers such as inducible nitric oxide synthase (iNOS) and arginase-1, and cytokines such as IL-6 and IL-10, indicating that viperin expression in BMDMs does not affect the basal gene expression of macrophage markers and cytokines. However, when BMDMs are completely polarized, the levels of expression of macrophage markers and secretion of cytokines in viperin KO M1 and M2 macrophages are significantly higher than those in WT M1 and M2 macrophages. The data suggest that viperin plays a role as a regulator in polarization of macrophages and secretion of M1 and M2 cytokines.
Bone Marrow
;
Bone Marrow Cells
;
Cytokines*
;
Cytomegalovirus
;
Dendritic Cells
;
Fibroblasts
;
Gene Expression
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Hepatocytes
;
Humans
;
Interleukin-10
;
Interleukin-6
;
Macrophage Colony-Stimulating Factor
;
Macrophages*
;
Metabolism
;
Monocytes
;
Nitric Oxide Synthase Type II
;
T-Lymphocytes
9.Quercetin modulates iron homeostasis and iNOS expression of splenic macrophages in a rat model of iron deficiency anemia.
Maryam MAZHAR ; Nurul KABIR ; Shabana U SIMJEE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):580-589
Iron deficiency anemia is one of the most common micronutrient deficient conditions around the globe with various consequences, including the weakened immune system. Quercetin is widely distributed bioflavonoid; it has been debated for its dual roles in iron regulation. Quercetin-iron interaction in the body is a complex mechanism which has not been completely understood. The present study aimed to investigate the effect of quercetin on iron supplementation in iron deficiency anemia and on iNOS expression in splenic macrophages. The rat model of iron deficiency anemia was induced by feeding low iron diet to weanling rats for 20 days. The animals were then administered with ferrous sulfate, quercetin, and their combination for 30 days. Blood parameters, histopathological analysis, iron storage, CD68, iNOS and SLC40 expression in rat spleen were investigated. Our results showed that quercetin regulated iron absorption, despite SLC40 down-expression, indicating possible alternate route of iron transport, and that quercetin modulated iNOS production in splenic macrophages.
Anemia, Iron-Deficiency
;
drug therapy
;
genetics
;
metabolism
;
Animals
;
Dietary Supplements
;
analysis
;
Female
;
Homeostasis
;
drug effects
;
Humans
;
Iron
;
deficiency
;
Macrophages
;
drug effects
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Quercetin
;
administration & dosage
;
Rats
;
Rats, Sprague-Dawley
;
Spleen
;
drug effects
;
enzymology
10.Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways.
Qiang ZENG ; Chun-Hay KO ; Wing-Sum SIU ; Kai-Kai LI ; Chun-Wai WONG ; Xiao-Qiang HAN ; Liu YANG ; Clara Bik-San LAU ; Jiang-Miao HU ; Ping-Chung LEUNG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):481-489
Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cyclooxygenase 2
;
genetics
;
Cytokines
;
metabolism
;
Dendrobium
;
chemistry
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
Macrophages
;
drug effects
;
enzymology
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type II
;
genetics
;
Phosphorylation
;
drug effects
;
Plant Extracts
;
pharmacology
;
RAW 264.7 Cells
;
Signal Transduction
;
drug effects

Result Analysis
Print
Save
E-mail