1.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism
2.Scopariusols L-T, nine new ent-kaurane diterpenoids isolated from Isodon scoparius.
Hua-Yi JIANG ; Xiao-Nian LI ; Han-Dong SUN ; Hong-Bin ZHANG ; Pema-Tenzin PUNO
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):456-464
Nine new ent-kaurane diterpenoids, named scopariusols L-T (1-9), were isolated from the aerial parts of Isodon scoparius. Their structures were characterized mainly by analyzing the NMR and HR-ESI-MS data, and the absolute configuration of 1 was determined by single-crystal X-ray diffraction. Compound 1 was active against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), and it also inhibited NO production in LPS-stimulated RAW264.7 cells, with an IC value of 0.6 μmol·L.
Animals
;
Antineoplastic Agents, Phytogenic
;
chemistry
;
isolation & purification
;
pharmacology
;
Cell Line, Tumor
;
Crystallography, X-Ray
;
Diterpenes, Kaurane
;
chemistry
;
isolation & purification
;
pharmacology
;
Drug Screening Assays, Antitumor
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
HL-60 Cells
;
Humans
;
Isodon
;
chemistry
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
Mice
;
Molecular Structure
;
Nitric Oxide
;
biosynthesis
;
Nuclear Magnetic Resonance, Biomolecular
;
Plant Components, Aerial
;
chemistry
;
RAW 264.7 Cells
3.Calpain inhibition improves erectile function in diabetic mice via upregulating endothelial nitric oxide synthase expression and reducing apoptosis.
Hao LI ; Li-Ping CHEN ; Tao WANG ; Shao-Gang WANG ; Ji-Hong LIU
Asian Journal of Andrology 2018;20(4):342-348
Calpain activation contributes to hyperglycemia-induced endothelial dysfunction and apoptosis. This study was designed to investigate the role of calpain inhibition in improving diabetic erectile dysfunction (ED) in mice. Thirty-eight-week-old male C57BL/6J mice were divided into three groups: (1) nondiabetic control group, (2) diabetic mice + vehicle group, and (3) diabetic mice + MDL28170 (an inhibitor of calpain) group. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin at 60 mg kg-1 body weight for 5 consecutive days. Thirteen weeks later, diabetic mice were treated with MDL28170 or vehicle for 4 weeks. The erectile function was assessed by electrical stimulation of the cavernous nerve. Penile tissues were collected for measurement of calpain activity and the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. Terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL) staining was used to evaluate apoptosis. Caspase-3 expression and activity were also measured to determine apoptosis. Our results showed that erectile function was enhanced by MDL28170 treatment in diabetic mice compared with the vehicle diabetic group. No differences in calpain-1 and calpain-2 expressions were observed among the three groups. However, calpain activity was increased in the diabetic group and reduced by MDL28170. The eNOS-NO-cGMP pathway was upregulated by MDL28170 treatment in diabetic mice. Additionally, MDL28170 could attenuate apoptosis and increase the endothelium and smooth muscle levels in corpus cavernosum. Inhibition of calpain could improve erectile function, probably by upregulating the eNOS-NO-cGMP pathway and reducing apoptosis.
Animals
;
Apoptosis/drug effects*
;
Calpain/antagonists & inhibitors*
;
Cyclic GMP/biosynthesis*
;
Diabetes Complications/drug therapy*
;
Diabetes Mellitus, Experimental/complications*
;
Dipeptides/therapeutic use*
;
Endothelium/metabolism*
;
Enzyme Inhibitors/therapeutic use*
;
Erectile Dysfunction/etiology*
;
In Situ Nick-End Labeling
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Muscle, Smooth/metabolism*
;
Nitric Oxide Synthase Type III/biosynthesis*
;
Penis/enzymology*
;
Up-Regulation
4.Triterpenoid saponins from the roots of Cyathula officinalis and their inhibitory effects on nitric oxide production.
Yun-Tao JIANG ; Wen-Jing YAN ; Chu-Lu QI ; Ji-Qin HOU ; Yan-Ying ZHONG ; Hui-Jun LI ; Hao WANG ; Ping LI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(6):463-466
The present study was designed to investigate the chemical constituents of the roots of Cyathula officinalis. Compounds were isolated by silica gel, Sephadex LH-20, ODS column chromatography, and preparative HPLC. Their structures were determined on the basis of 1D and 2D NMR techniques, mass spectrometry, and chemical methods. One new oleanane-type triterpenoid saponin, 28-O-[α-L-rhamnopyranosyl-(1→3)-β-D-glucuronopyranosyl-(1→3)-β-D-glucopyranosyl] hederagenin (1), was isolated from the roots of Cyathula officinalis. The anti-inflammatory activities of the isolates were evaluated for their inhibitory effects against LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages cells. Compounds 2, 4, and 6 exhibited moderate anti-inflammatory activities.
Amaranthaceae
;
chemistry
;
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
Cells, Cultured
;
Magnetic Resonance Spectroscopy
;
Mice
;
Nitric Oxide
;
antagonists & inhibitors
;
biosynthesis
;
Plant Roots
;
chemistry
;
Saponins
;
chemistry
;
isolation & purification
;
pharmacology
;
Triterpenes
;
chemistry
;
isolation & purification
;
pharmacology
5.Bucillamine prevents cisplatin-induced ototoxicity through induction of glutathione and antioxidant genes.
Se Jin KIM ; Joon Ho HUR ; Channy PARK ; Hyung Jin KIM ; Gi Su OH ; Joon No LEE ; Su Jin YOO ; Seong Kyu CHOE ; Hong Seob SO ; David J LIM ; Sung K MOON ; Raekil PARK
Experimental & Molecular Medicine 2015;47(2):e142-
Bucillamine is used for the treatment of rheumatoid arthritis. This study investigated the protective effects of bucillamine against cisplatin-induced damage in auditory cells, the organ of Corti from postnatal rats (P2) and adult Balb/C mice. Cisplatin increases the catalytic activity of caspase-3 and caspase-8 proteases and the production of free radicals, which were significantly suppressed by pretreatment with bucillamine. Bucillamine induces the intranuclear translocation of Nrf2 and thereby increases the expression of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GSS), which further induces intracellular antioxidant glutathione (GSH), heme oxygenase 1 (HO-1) and superoxide dismutase 2 (SOD2). However, knockdown studies of HO-1 and SOD2 suggest that the protective effect of bucillamine against cisplatin is independent of the enzymatic activity of HO-1 and SOD. Furthermore, pretreatment with bucillamine protects sensory hair cells on organ of Corti explants from cisplatin-induced cytotoxicity concomitantly with inhibition of caspase-3 activation. The auditory-brainstem-evoked response of cisplatin-injected mice shows marked increases in hearing threshold shifts, which was markedly suppressed by pretreatment with bucillamine in vivo. Taken together, bucillamine protects sensory hair cells from cisplatin through a scavenging effect on itself, as well as the induction of intracellular GSH.
Animals
;
Antioxidants/*metabolism/*pharmacology
;
Apoptosis/drug effects
;
Caspase 3/metabolism
;
Caspase 8/metabolism
;
Cell Line
;
Cisplatin/*toxicity
;
Cysteine/*analogs & derivatives/pharmacology
;
Gene Expression Regulation/*drug effects
;
Gene Knockdown Techniques
;
Glutathione/*metabolism
;
Heme Oxygenase-1/genetics
;
Intracellular Space/metabolism
;
Male
;
Metabolic Detoxication, Phase II/genetics
;
Mice
;
NF-E2-Related Factor 2/genetics
;
Nitric Oxide/biosynthesis
;
Organ of Corti/*drug effects/*metabolism
;
RNA Interference
;
Rats
;
Reactive Oxygen Species/metabolism
;
Superoxide Dismutase/genetics
6.Therapeutic effect of dimethyl dimethoxy biphenyl dicarboxylate on collagen-induced arthritis in rats.
Roba M TALAAT ; Amira S ABO-EL-ATTA ; Sabah M FAROU ; Karima I EL-DOSOKY
Chinese journal of integrative medicine 2015;21(11):846-854
OBJECTIVETo study the effect of oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) on adjusting angiogeneic/inflammatory mediators and ameliorating the pathology of bones in rats with collagen-induced arthritis (CIA).
METHODSWistar rat model of CIA was set up using bovine collagen type II. Fifty rats were divided into five groups randomly: normal, CIA model, DDB treatment, methotrexate (MTX) treatment, and combined DDB+MTX treatment. Ankle joints of rats were imaged with digital X-ray machine to show the destruction of joints. Fore and hind paw and knee joints were removed above the ankle joint then processed for haematoxylin and eosin staining. Plasma levels of vascular endothelial growth factor (VEGF), platelet derived growth factor, interleukin-8 (IL-8), IL-4, tumor necrosis factor α (TNF-α), and cyclooxygenase-2 (COX-2) were quantified by enzyme-linked immunosorbent assay. Nitric oxide levels were detected by Griess reagent.
RESULTSCompared with the CIA model group, a remarkable reduction in various angiogenic (VEGF and IL-8) and inflammatory mediators (TNF-α, IL-4 and COX-2) after treatment with DDB either alone or combined with MTX P<0.05 or P<0.01). Histopathological and X-ray findings were confirmatory to the observed DDB anti-arthritic effect. The DDB-treated group showed amelioration in signs of arthritis which appeared essentially similar to normal.
CONCLUSIONOur data shed light on the therapeutic efficacy of DDB in experimental rheumatoid arthritis (RA) compared with a choice drug (MTX) and it may be offered as a second-line drug in the treatment of RA.
Animals ; Arthritis, Experimental ; chemically induced ; diagnostic imaging ; drug therapy ; pathology ; Arthritis, Rheumatoid ; diagnostic imaging ; drug therapy ; pathology ; Collagen ; Cyclooxygenase 2 ; blood ; Dioxoles ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Interleukin-4 ; blood ; Interleukin-8 ; blood ; Methotrexate ; therapeutic use ; Nitric Oxide ; biosynthesis ; Platelet-Derived Growth Factor ; analysis ; Radiography ; Rats ; Rats, Wistar ; Tumor Necrosis Factor-alpha ; blood ; Vascular Endothelial Growth Factor A ; blood
7.Platelets and erectile dysfunction.
National Journal of Andrology 2015;21(9):771-774
Platelets, small pieces of cytoplasm with biological activity, split and fall off the megakaryocytes and mature from the bone marrow. After stimulated, platelets produce nitric oxide to inhibit their own activation and aggregation. Pathologically, the injury of endothelial cells activates platelets and changes their functions. The release of inflammatory mediators and cytokines induces and enhances the development and progression of atherosclerosis, and thereby promotes the occurrence of erectile dysfunction. Besides, platelets and their related functional parameters may serve as important indicators in the diagnosis and treatment of erectile dysfunction.
Atherosclerosis
;
etiology
;
Blood Platelets
;
physiology
;
Cytokines
;
metabolism
;
Endothelial Cells
;
Erectile Dysfunction
;
etiology
;
Humans
;
Male
;
Nitric Oxide
;
biosynthesis
;
Platelet Activation
8.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
Animals
;
Cell Cycle
;
immunology
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Fungal Polysaccharides
;
pharmacology
;
Immunity
;
drug effects
;
Interferon-gamma
;
biosynthesis
;
metabolism
;
Interleukin-6
;
biosynthesis
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mice
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Pleurotus
;
RNA, Messenger
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tumor Necrosis Factor-alpha
;
biosynthesis
;
metabolism
;
Up-Regulation
9.Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells.
Hong-Yan ZHU ; Guang-Tong CHEN ; Guo-Liang MENG ; Ji-Liang XU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(3):199-207
The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Mannose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus.
Animals
;
Apoptosis
;
drug effects
;
Chromatography, Gas
;
Chromatography, Gel
;
Cucurbita
;
chemistry
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Islets of Langerhans
;
drug effects
;
injuries
;
Magnetic Resonance Spectroscopy
;
Malondialdehyde
;
analysis
;
Molecular Weight
;
Monosaccharides
;
analysis
;
Nitric Oxide
;
biosynthesis
;
Polysaccharides
;
chemistry
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Spectroscopy, Fourier Transform Infrared
;
Superoxide Dismutase
;
drug effects
;
bcl-2-Associated X Protein
;
drug effects
10.Wheat peptides reduce oxidative stress and inhibit NO production through modulating μ-opioid receptor in a rat NSAID-induced stomach damage model.
Hong YIN ; Hui-Zhen CAI ; Shao-Kang WANG ; Li-Gang YANG ; Gui-Ju SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):22-29
Non-steroidal anti-inflammatory drugs (NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs (aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and decreased iNOS activity in stomach. The mRNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
adverse effects
;
Antioxidants
;
pharmacology
;
Aspirin
;
adverse effects
;
Gastric Mucosa
;
drug effects
;
Gene Expression
;
Glutathione Peroxidase
;
drug effects
;
Indomethacin
;
adverse effects
;
Male
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase
;
chemical synthesis
;
Oxidation-Reduction
;
Oxidative Stress
;
drug effects
;
Plant Proteins
;
pharmacology
;
RNA, Messenger
;
genetics
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Opioid, mu
;
drug effects
;
Stomach
;
drug effects
;
Superoxide Dismutase
;
drug effects
;
Triticum
;
chemistry

Result Analysis
Print
Save
E-mail