1.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism
2.Therapeutic effect of dimethyl dimethoxy biphenyl dicarboxylate on collagen-induced arthritis in rats.
Roba M TALAAT ; Amira S ABO-EL-ATTA ; Sabah M FAROU ; Karima I EL-DOSOKY
Chinese journal of integrative medicine 2015;21(11):846-854
OBJECTIVETo study the effect of oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) on adjusting angiogeneic/inflammatory mediators and ameliorating the pathology of bones in rats with collagen-induced arthritis (CIA).
METHODSWistar rat model of CIA was set up using bovine collagen type II. Fifty rats were divided into five groups randomly: normal, CIA model, DDB treatment, methotrexate (MTX) treatment, and combined DDB+MTX treatment. Ankle joints of rats were imaged with digital X-ray machine to show the destruction of joints. Fore and hind paw and knee joints were removed above the ankle joint then processed for haematoxylin and eosin staining. Plasma levels of vascular endothelial growth factor (VEGF), platelet derived growth factor, interleukin-8 (IL-8), IL-4, tumor necrosis factor α (TNF-α), and cyclooxygenase-2 (COX-2) were quantified by enzyme-linked immunosorbent assay. Nitric oxide levels were detected by Griess reagent.
RESULTSCompared with the CIA model group, a remarkable reduction in various angiogenic (VEGF and IL-8) and inflammatory mediators (TNF-α, IL-4 and COX-2) after treatment with DDB either alone or combined with MTX P<0.05 or P<0.01). Histopathological and X-ray findings were confirmatory to the observed DDB anti-arthritic effect. The DDB-treated group showed amelioration in signs of arthritis which appeared essentially similar to normal.
CONCLUSIONOur data shed light on the therapeutic efficacy of DDB in experimental rheumatoid arthritis (RA) compared with a choice drug (MTX) and it may be offered as a second-line drug in the treatment of RA.
Animals ; Arthritis, Experimental ; chemically induced ; diagnostic imaging ; drug therapy ; pathology ; Arthritis, Rheumatoid ; diagnostic imaging ; drug therapy ; pathology ; Collagen ; Cyclooxygenase 2 ; blood ; Dioxoles ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Interleukin-4 ; blood ; Interleukin-8 ; blood ; Methotrexate ; therapeutic use ; Nitric Oxide ; biosynthesis ; Platelet-Derived Growth Factor ; analysis ; Radiography ; Rats ; Rats, Wistar ; Tumor Necrosis Factor-alpha ; blood ; Vascular Endothelial Growth Factor A ; blood
3.Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells.
Hong-Yan ZHU ; Guang-Tong CHEN ; Guo-Liang MENG ; Ji-Liang XU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(3):199-207
The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Mannose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus.
Animals
;
Apoptosis
;
drug effects
;
Chromatography, Gas
;
Chromatography, Gel
;
Cucurbita
;
chemistry
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Islets of Langerhans
;
drug effects
;
injuries
;
Magnetic Resonance Spectroscopy
;
Malondialdehyde
;
analysis
;
Molecular Weight
;
Monosaccharides
;
analysis
;
Nitric Oxide
;
biosynthesis
;
Polysaccharides
;
chemistry
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Spectroscopy, Fourier Transform Infrared
;
Superoxide Dismutase
;
drug effects
;
bcl-2-Associated X Protein
;
drug effects
4.Effects and mechanism of low-intensity pulsed ultrasound on extracellular matrix in rabbit knee osteoarthritis.
Shou-Yu XU ; Li-Mei ZHANG ; Xin-Miao YAO ; Guo-Qing ZHOU ; Xia LI ; Bang-Jian HE ; Xiao-Gang CHEN
China Journal of Orthopaedics and Traumatology 2014;27(9):766-771
OBJECTIVETo observe the effects of low-intensity pulsed ultrasound (LIPUS) on repairing extracellular matrix in rabbit knee osteoarthritis and analyze its mechanism.
METHODSSixty adult female rabbits with an average weight of (2.0 ± 0.2) kg, were divided randomly into two groups (experimental group and control group, 30 rabbits in each group). All rabbits were replicated in right knees by Hulth method for knee osteoarthritis model. Two weeks after operation, the rabbits in experimental group were treated with LIPUS, and the ultrasonic frequency was (800 ± 5%)KHz and the maximum intensities of spatially averaged and time averaged (SATA) was (50 ± 10%) mw/cm2, for 1 time a day and every time 20 min, while the rabbits in control group were treated with sham LIPUS,the same operation with experimental group but without energy output. At the 2, 4, 8 weeks after treatment, 10 rabbits in each group were randomly killed for each time. The general changes of cartilage and its histopathological changes by HE staining were observed; the expression of collagen type II, proteoglycan, MMP-3, 7, 13 in cartilage were analyzed by immunohistochemical and RT-PCR technique; and the expression of NO in cartilage was analyzed by nitrate reduction method.
RESULTSOn the same observed time point, the damage degree of cartilage in experimental group was slighter than that of control group (P < 0.01), the expression of MMP-3, 7, 13 and NO in cartilage in experimental group was lower than that of control group (P < 0.01) while collagen type II and proteoglycan was higher than that of control group (P < 0.01).
CONCLUSIONLow-intensity pulsed ultrasound can repair the damaged cartilage by reducing the expression of MMP-3, 7, 13, inhibiting the secretion of NO and promoting the synthesis of collagen type II and proteoglycan in cartilage.
Animals ; Cartilage, Articular ; pathology ; Collagen Type II ; biosynthesis ; Extracellular Matrix ; metabolism ; Female ; Matrix Metalloproteinases ; analysis ; Nitric Oxide ; biosynthesis ; Osteoarthritis, Knee ; metabolism ; therapy ; Rabbits ; Ultrasonic Therapy ; methods
5.Effect of pomegranate peel polyphenol gel on cutaneous wound healing in alloxan-induced diabetic rats.
Huan YAN ; Ke-jun PENG ; Qiu-lin WANG ; Zheng-yi GU ; Yao-qin LU ; Jun ZHAO ; Fang XU ; Yi-lun LIU ; Ying TANG ; Feng-mei DENG ; Peng ZHOU ; Jia-gui JIN ; Xin-chun WANG
Chinese Medical Journal 2013;126(9):1700-1706
BACKGROUNDPomegranate (punica granatum) belongs to the family Punicaceae, and its peel has been used as a traditional Chinese medicine because of its efficacy in restraining intestine, promoting hemostasis, and killing parasites. Pomegranate peel has been reported to possess wound-healing properties which are mainly attributed to its polyphenol extracts. The purpose of this study was to investigate the effect of pomegranate peel polyphenols (PPP) gel on cutaneous wound healing in diabetic rats.
METHODSAlloxan-induced diabetic rats were given incisional wounds on each side of the mid-back and then treated daily with PPP gel (polyphenol mass fraction = 30%) post-wounding. Rats were sacrificed on days 4, 7, 14, and 21 post-wounding to assess the rates of wound closure, histological characteristics; and to detect the contents of hydroxyproline, production of nitric oxide (NO), and activities of NO synthase (NOS), as well as the expressions of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) in wound tissue.
RESULTSWound closure was significantly shortened when PPP gel was applied to the wounds of diabetic rats. Histological examination showed the ability of PPP gel to increase fibroblast infiltration, collagen regeneration, vascularization, and epithelialization in the wound area of diabetic rats. In addition, PPP gel-treated diabetic rats showed increased contents of hydroxyproline, production of NO, and activities of NOS and increased expressions of TGF-β1, VEGF, and EGF in wound tissues.
CONCLUSIONPPP gel may be a beneficial method for treating wound disorders associated with diabetes.
Alloxan ; Animals ; Diabetes Mellitus, Experimental ; pathology ; physiopathology ; Female ; Gels ; Hydroxyproline ; analysis ; Male ; Nitric Oxide ; biosynthesis ; Polyphenols ; pharmacology ; Punicaceae ; Rats ; Rats, Wistar ; Transforming Growth Factor beta1 ; physiology ; Vascular Endothelial Growth Factor A ; physiology ; Wound Healing ; drug effects
6.Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7).
Rajendra KARKI ; E-mail: mokpou@yahoo.co.kr, DBKIM@MOKPO.AC.KR. ; Cheol-Ho PARK ; Dong-Wook KIM
Journal of Integrative Medicine 2013;11(4):246-252
OBJECTIVEBuckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs. The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators.
METHODSThe anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)- and nitric oxide (NO)-scavenging activities, serum peroxidation and chelating assays. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin. NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis. Also, the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay.
RESULTSInhibitory concentration 50 values for DPPH- and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively. BWE inhibited serum oxidation and possessed chelating activity. Furthermore, BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells. Also, BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation.
CONCLUSIONBuckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems. Thus, buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.
Animals ; Cells, Cultured ; Cyclooxygenase 2 ; analysis ; Fagopyrum ; Free Radical Scavengers ; pharmacology ; Inflammation Mediators ; antagonists & inhibitors ; Interleukin-6 ; biosynthesis ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; metabolism ; Mice ; NF-kappa B ; metabolism ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; analysis ; Plant Extracts ; pharmacology ; Tumor Necrosis Factor-alpha ; biosynthesis
7.Effects of clearance of superoxide anion by catechin on the expression of NO and eNOS and apoptosis in endothelial progenitor cells induced by angiotensin II.
Li-Yuan WU ; Xi-Qiang DANG ; Xiao-Jie HE ; Zhu-Wen YI
Chinese Journal of Contemporary Pediatrics 2009;11(6):476-480
OBJECTIVETo evaluate the effect of clearance of superoxide anion by catechin on the expression of nitrogen monoxidum (NO) and endothelial nitricoxide synthase (eNOS) and apoptosis in endothelial progenitor cells (EPCs) induced by angiotensin II (Ang II).
METHODSThe marrow endothelial progenitor cells of Sprague-Dawley rats were isolated and assigned to control (no treatment), Ang II treatment and Ang II + catechin treatment groups. After 48 hrs of culture, the concentration of O2*- in the supernate was measured by the NBT method, and NO concentration in the supernate was measured by the nitrate reductase method; the apoptosis rate of EPCs was detected by the TUNEL method; the mRNA expression of eNOS was detected by RT-PCR; the protein expression of eNOS was detected by Western blot analysis.
RESULTSAng II of 10-6 mol/L was determined as the suitable concentration for cell induction by the MTT test. Catechin of 400 mg/L was determined as an advisable intervention dosage. The apoptosis rate of EPCs in the control, the Ang II and the Ang II+catechin treatment groups were 2.48+/-0.12%, 54.18+/-0.77% and 16.87+/-0.35%, respectively, and there were significant differences among the three groups (P<0.01). The O2*- concentration in the Ang II and the Ang II+catechin treatment groups (81.7+/- 3.6 and 62.3+/- 2.2 U/L respectively) was significantly higher than that in the control group (33.7+/- 2.8 U/L) (P<0.01). An increased NO concentration was also found in the Ang II (189. 8+/- 9.0 micromol/L) and the Ang II+catechin treatment groups (276.4+/- 10.1 micromol/L) compared with that in the control group (105.8+/- 9.8 micromol/L) (P<0.01). There were significant differences in the concentrations of O2*- and NO between the Ang II and the Ang II+catechin treatment groups (P<0.05). The mRNA (P<0.05) and protein expression (P<0.01) of eNOS in the Ang II and the Ang II+catechin treatment groups increased significantly compared with those in the control group. The Ang II+catechin treatment group showed increased eNOS protein expression compared with the Ang II group (P<0.05).
CONCLUSIONSAng II may induce the generation of O2*-, inactivate NO and increase gene and protein expression of eNOS in EPCs. Catechin might decrease the apoptosis of EPCs through the effective clearance of O2*-and the reduction of NO inactivation and of eNOS protein uncoupling.
Angiotensin II ; pharmacology ; Animals ; Apoptosis ; drug effects ; Catechin ; pharmacology ; Cell Survival ; drug effects ; Endothelial Cells ; drug effects ; metabolism ; Female ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type III ; analysis ; genetics ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; drug effects ; metabolism ; Superoxides ; metabolism
8.Role of oxidative stress in the pathogenesis of esophageal mucosal injury in children with reflux esophagitis.
Feng LIU ; Mi-Zu JIANG ; Xiao-Li SHU ; Xu-Ping ZHANG
Chinese Journal of Contemporary Pediatrics 2009;11(6):425-428
OBJECTIVETo investigate the role of oxidative stress in the pathogenesis of esophageal mucosa injury in children with reflux esophagitis (RE).
METHODSEsophageal mucosal samples from 36 children with RE (7 months to 16 years of age) were obtained by gastroscopy. The parameters of oxidative stress, including the contents of malondialdehyde (MDA), glutathione (GSH) and nitric oxide (NO) and total superoxide dismutase (T-SOD) activity in the esophageal mucosa as well as the protein content of the esophageal mucosa, were measured. Twenty children (3 to 16 years of age) without esophageal mucosal injury by gastroscopy served as controls.
RESULTSThere was no significant difference in the protein content of the esophageal mucosa between the RE and the control groups. The content of MDA in the RE group (15.36+/- 16.67 nmol/mg) was significantly higher than that in the control group (7.51+/- 6.17 nmol/mg) (P<0.01). The activity of T-SOD in the RE group (30.43+/- 35.09 U/mg) was statistically lower than that in the control group (56.34+/- 51.73 U/mg) (P<0.05). No significant differences were observed in GSH and NO contents between the two groups.
CONCLUSIONSThe MDA content increases and the SOD content decreases in the esophageal mucosa in children with RE. This suggests that oxidative stress seems to be an important mediator in generation of esophageal mucosal injury.
Adolescent ; Child ; Child, Preschool ; Esophagitis, Peptic ; complications ; metabolism ; Esophagus ; metabolism ; Female ; Glutathione ; metabolism ; Humans ; Infant ; Male ; Malondialdehyde ; analysis ; Mucous Membrane ; metabolism ; Nitric Oxide ; biosynthesis ; Oxidative Stress ; Superoxide Dismutase ; metabolism
9.Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats.
Yong-song CHEN ; Xu-xin ZHU ; Xiao-yun ZHAO ; Han-ying XING ; Yu-guang LI
Chinese Medical Journal 2008;121(3):241-247
BACKGROUNDUnder an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states.
METHODSSprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs).
RESULTSCompared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX.
CONCLUSIONSThe endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.
Animals ; Aorta ; drug effects ; physiology ; Carbon Monoxide ; blood ; Endothelium, Vascular ; drug effects ; physiology ; Enzyme Induction ; drug effects ; Heme Oxygenase-1 ; analysis ; biosynthesis ; genetics ; Hemin ; pharmacology ; Insulin Resistance ; Male ; Nitric Oxide ; blood ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Systole ; drug effects
10.Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats.
Jun ZOU ; Jiang-hua REN ; Dan FENG ; Hong WANG ; Jiang XU
Chinese Medical Journal 2008;121(13):1220-1225
BACKGROUNDBradykinin (BK) acts mainly on two receptor subtypes: B(1) and B(2), and activation of B(2) receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors (ACEi), however, the role that B(1) receptor plays in ACEi has not been fully defined. We examined the role of B(1) receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin II (Ang II) and explored its possible mechanism.
METHODSNeonatal cardiomyocytes and cardiac fibroblasts (CFs) were randomly treated with Ang II, captopril, B(2) receptor antagonist (HOE-140) and B(1) receptor antagonist (des-Arg(10), Leu(9)-kallidin) alone or in combination. Flow cytometry was used to evaluate cell cycle, size and protein content. Nitric oxide (NO) and intracellular cyclic guanosine monophosphate (cGMP) level were measured by colorimetry and radioimmunoassay.
RESULTSAfter the CFs and cardiomyocytes were incubated with 0.1 micromol/L Ang II for 48 hours, the percentage of CFs in the S stage, cardiomyocytes size and protein content significantly increased (both P < 0.01 vs control), and these increases were inhibited by 10 micromol/L captopril. However, NO and cGMP levels were significantly higher than that with Ang II alone (both P < 0.01). 1 micromol/L HOE-140 or 0.1 micromol/L des-Arg(10), Leu(9)-kallidin attenuated the effects of captopril, which was blunted further by blockade of both B(1) and B(2) receptors.
CONCLUSIONSActing via B(2) receptor, BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs. In the absence of B(2) receptor, B(1) receptor may act a compensatory mechanism for the B(2) receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril. NO and cGMP play an important role in the effect of B(1) receptor.
Angiotensin-Converting Enzyme Inhibitors ; pharmacology ; Animals ; Animals, Newborn ; Captopril ; pharmacology ; Cardiomegaly ; prevention & control ; Cell Proliferation ; drug effects ; Cell Size ; drug effects ; Cyclic GMP ; analysis ; DNA ; biosynthesis ; Fibroblasts ; drug effects ; physiology ; Myocytes, Cardiac ; drug effects ; pathology ; Nitric Oxide ; analysis ; Rats ; Rats, Sprague-Dawley ; Receptor, Bradykinin B1 ; physiology

Result Analysis
Print
Save
E-mail